
ar
X

iv
:2

41
2.

11
25

7v
3

 [
st

at
.M

L
]

 7
 J

un
 2

02
5

PREDICTION-ENHANCED MONTE CARLO: A MACHINE LEARNING VIEW
ON CONTROL VARIATE

FENGPEI LI∗1‡, HAOXIAN CHEN∗1†, JIAHE LIN∗1, ARKIN GUPTA1, XIAOWEI TAN1, HONGLEI ZHAO1,
GANG XU1, YURIY NEVMYVAKA1, AGOSTINO CAPPONI2, AND HENRY LAM2

Abstract. For many complex simulation tasks spanning areas such as healthcare, engineering, and
finance, Monte Carlo (MC) methods are invaluable due to their unbiased estimates and precise error
quantification. Nevertheless, MC simulations often become computationally prohibitive, especially
for nested, multi-level, or path-dependent evaluations lacking effective variance reduction techniques.
While machine learning (ML) surrogates appear as natural alternatives, naïve replacements typically
introduce unquantifiable biases. We address this challenge by introducing Prediction-Enhanced
Monte Carlo (PEMC), a framework that leverages modern ML models as learned predictors, using
cheap and parallelizable simulations as features, to output unbiased evaluations with reduced variance
and runtime. As a result, PEMC eliminates the closed-form-mean requirement that constrains
classical control-variate methods, preserves unbiasedness and explicit confidence intervals of MC, and
achieves scheme-wide variance reduction. Our theoretical analysis quantifies the optimal allocation
between expensive evaluations and large batches of cheap, parallelizable feature draws. Across three
representative applications—variance-swap pricing under stochastic-local-volatility, swaption pricing
under Heath–Jarrow–Morton models, and ambulance diversion policy evaluation—we show that
PEMC reduces root-mean-squared error by 30–55% relative to standard MC at similar computational
cost.

Key words: Monte Carlo methods, Exotic Options Pricing, Control Variates, Variance Swaps,
Swaptions.

1. Introduction

Monte Carlo (MC) is a fundamental tool for evaluating complex stochastic models where closed-
form solutions are unavailable. Its main strengths—unbiasedness and rigorous uncertainty quantification
through variance estimation and confidence intervals—make it essential in high-stakes, high-complexity
applications such as healthcare resource allocation and financial risk management, where fairness or
regulatory compliance are crucial. For example, transparent and bias-aware methods in healthcare
are vital to ensure equitable outcomes and prevent disparities in care access [113, 77, 42]. Similarly,
financial risk assessments rely on MC estimation to support hedging, re-balancing decisions, and valid
error bounds, as minor biases in financial simulations can accumulate [30].

Despite these advantages, classical MC faces significant challenges in nested, multilevel, or path-
dependent simulations that are difficult to parallelize. Complex stochastic dynamics can make each
sample path extremely costly to generate—sometimes taking hours for one sample (e.g., to estimate
credit valuation adjustments in over-the-counter contracts, see [63])—and effective variance reduction
methods are often unavailable [9]. Consequently, MC’s inherent O(1/

√
n) convergence rate often

prohibits real-time decision-making with adequate precision. This is the case, for example, in the
context of pricing of exotic options, where sample paths need to be generated sequentially under
complex dynamics, making parallelization not easily achievable [61]. These computational challenges

Date: June 10, 2025.
∗Equal Contribution. 1Morgan Stanley. 2Department of IEOR, Columbia University. †The work was done during

empolyment at Morgan Stanley.
‡Corresponding author: fl2412@columbia.edu.

1

https://arxiv.org/abs/2412.11257v3

2 Li et al.

are critical in financial derivative pricing, as highlighted in the literature, for example, in [74, Chapter
21] and [30, Chapter 4]. Similar computational bottlenecks arise in healthcare simulation, where
modeling complex patient flows and hospital operations can require extensive computation time but
transparent and bias-aware methods are crucial to ensure equitable outcomes [113, 77, 42].

Conversely, machine learning (ML) based predictive modeling has emerged as a fast alternative
for approximating MC evaluations, including pricing financial derivatives [75, 53, 15]. Neural networks
and other ML techniques can learn complex mappings and, once trained, can generate predictions at
negligible marginal cost - what practitioners often call “fast evaluation" [73]. However, their black-box
nature and lack of inherent statistical control hinder the quantification of errors, rendering them
unsuitable for tasks requiring rigorous reliability assessments, such as high-stakes applications in risk
management [75, 32]. Thus, MC and ML represent opposite ends of the spectrum: MC is reliable
and uncertainty quantifiable but intrinsically slow, while ML is computationally fast but falls short in
statistical guarantees.

Given this trade-off between the speed of ML and the reliability of MC, a natural question
arises: can we design a method that combines both advantages while avoiding their respective pitfalls?
In this paper, we provide a positive answer by introducing the Prediction-Enhanced Monte Carlo
(PEMC) framework. PEMC leverages predictive ML modeling to replace a large portion of costly
simulations with cheap/parallelizable samples from ML models, reducing variance on a scheme-wide
level. Moreover, despite relying on black-box predictive models, PEMC maintains unbiasedness,
balancing computational savings with rigorous statistical guarantees.

1.1. Our Contributions. PEMC innovates in two aspects. First, PEMC integrates ML predictive
models into any MC baseline while preserving unbiasedness and error quantification of MC. Specifically,
we show how the predictive modeling of ML combined with cheap, parallelizable samples will result in
a reduction of variance and costly samples, enhancing real-time efficiency for complex MC simulations.
Second, PEMC can also be viewed as a modernized variant of the control variate (CV) technique, a
classical approach that reduces MC variance via auxiliary outputs whose known mean offsets random
fluctuations [61, 9, 98]. Unfortunately, the classical CV approach, which requires a closed-form
expression for the mean of a correlated auxiliary output, often becomes unavailable in many modern
applications or complex stochastic systems, effectively barring the use of CV.

To explain concretely the second point above, our PEMC framework bridges ML with MC by
substantially enlarging the scope of CV to many ML candidates. The key idea is the following: In
the traditional CV framework, the known mean of CV is used to achieve a per-replication variance
reduction while maintaining unbiasedness, i.e., the variance is reduced even if we run just one
simulation replication. While this is a powerful feature, it comes at the cost of significantly limiting
CV’s applicability, due to the requirement of a closed-form expression for the mean. However, if the
CV itself is computationally cheap in the sense of being estimatable with fast simulation, then we can
afford to run plenty of additional MC separately from the original MC to estimate its mean. This
would preserve unbiasedness and overall estimation variance relative to the total computation cost, as
long as we consider efficiency improvement at the scheme-wide level. That is, in the PEMC framework,
we consider total cost-aware instead of per-replication variance reduction, through which we relax
the crucial requirement of known CV mean, and this in turn allows us to substantially expand the
CV methodology to cover modern ML models. The alignment of our framework with the use of ML
predictions prompts us to regard PEMC as a modernized view of CV.

1.2. Literature Review. The literature on enhancing MC simulations with ML approximators is
extensive, yet many existing ML-based methods for CV and variance reduction impose restrictive
conditions that appear to limit their practical applicability. Approaches such as reproducing Stein
kernels [102, 89], Neural CV derived from Stein’s identity [132, 83], regularized least squares for
CV construction [109, 124, 86], adaptive CV schemes [67, 68, 80], and L 2 function approximation

PREDICTION-ENHANCED MONTE CARLO 3

frameworks [94] have demonstrated theoretical promise with potentially rapid convergence rates.
Recent theoretical work by [18] provides important insights into when regression-adjusted CVs can
achieve optimal performance, showing that their effectiveness depends critically on function smoothness.
However, these methods typically require knowledge of the CV mean, in turn restricting the classes of
usable CV, or impose specific structural assumptions that can be difficult to check. As a result, while
these existing methods offer strong theoretical foundations, their applicability in complex modeling
scenarios can be undermined.

In a different line of literature, the works of [50] on quasi CVs and [104] on CVs using Estimated
Means (CVEMs) is related to our approach, because they rely on an estimated mean (rather than a
priori known, and thus not a traditional CV) of a quantity that is expected to exhibit a strong correlation
with the random variable of interest. There are noticeable differences between our methodology and
theirs. To begin with, our primary objective is to integrate modern ML capabilities into MC, so that
our estimates can retain the error-quantifiability of the latter approach while leveraging the strengths
of ML. To this end, a core component of our methodology regards what is needed, and how to train a
suitable CV, rather than relying on a prefixed CV candidate, which may not always be obvious or
even available. Moreover, our investigation includes the use of a pre-training approach in place of
the adaptive algorithms employed in previous works, and provides a framework applicable to both
finite-sample and asymptotic regimes, unlike the exclusively asymptotic focus of prior studies.

Within the literature of MC variance reduction, PEMC also relates to Multilevel Monte Carlo
(MLMC) methods, originally introduced and popularized by [59], and also the idea of multi-fidelity
modeling popular in scientific computation [106]. MLMC reduces variance by leveraging a hierarchy of
discretizations (e.g., coarser and finer time steps in SDE simulations) and coupling them to achieve
computational efficiency over naive Monte Carlo approaches [58]. The key idea is to couple simulations
across resolution levels so that their differences exhibit reduced variance—or even enable unbiased
estimators [115, 19, 118]. Along a similar vein, in multi-fidelity modeling, computational simulation
models of different levels of resolution, which in turn bring in different accuracies and computational
demands, are jointly utilized and concatenated, with input model parameters treated as random
variables that allow coupling between the model levels [106]. Note that, despite the strong theoretical
foundations, MLMC can be difficult to implement in practice, since constructing effective couplings,
ensuring numerical stability, and tuning parameters to realize the theoretical complexity benefits are
nontrivial tasks [110]. PEMC adopts the coupling paradigm of MLMC and multi-fidelity modeling but
innovates by using ML predictors as CV.

Outside the MC literature, our PEMC framework aligns most closely with the recently proposed
Prediction-Powered Inference (PPI) approach [6]. PPI is a statistical framework that enables researchers
to construct valid confidence intervals and p-values when combining a small dataset with gold-standard
labels and a large dataset with ML predictions. The key challenge PPI addresses is how to leverage
abundant but potentially biased ML predictions alongside scarce but trustworthy ground-truth data for
statistical inference. Such PPI-type hybrid strategy is becoming increasingly important in evaluating
generative models such as large language models (LLMs) [138, 22, 52], where sparse human annotations
is combined with abundant ML-generated labels to facilitate accurate model performance evaluation
even in low-label scenarios. Additionally, the PPI methodologies also intersect with a rich literature
in causal inference, specifically in doubly robust estimators [10, 56, 116] and orthogonal statistical
learning [36, 55]. Doubly robust methods construct additional robustness layers by pairing sophisticated
predictive models with auxiliary estimators, ensuring that minor errors in one model component do
not significantly bias the overall estimation. This philosophy closely mirrors the logic of CV, and by
extension, the core principles of our PEMC framework. While PPI replaces expensive gold-standard
labels with cheaper ML predictions and auto-evaluation, PEMC focuses on replacing expensive,
path-dependent and non-parallelizable MC samples with cheap, efficiently simulated, and highly
parallelizable MC samples.

4 Li et al.

Finally, our work is also related to a branch of literature in computational finance, which has
focused on harnessing ML to enhance the speed and accuracy of derivatives pricing. By using techniques
such as neural network surrogates, these methods can approximate pricing functions or the Greeks
at a fraction of the computational cost of traditional numerical schemes [75, 32, 122, 117, 85]. Early
work by (author?) [75], for instance, use neural networks to relax stringent modeling assumptions,
while more recent approaches [32, 122, 117, 85] demonstrate that deep architectures can effectively
handle high-dimensional and path-dependent pricing problems. However, these purely data-driven
approximations typically lack the rigorous error controls afforded by more classical methods. In the
context of option pricing, even though both MC and partial differential equation (PDE)-based methods
are widely used, it is known that PDE methods generally cannot be used to price options (i.e., payoff
depends on the price path). While special cases allow for PDE formulations through state-space
augmentation or boundary condition adjustments, these remain as exceptions rather than the rule
[119].

The rest of the paper is organized as follows. In Section 2, we motivate and introduce PEMC. In
Section 3, we provide more details on our framework via a running example of Asian option pricing. In
Section 4, we present theoretical results and their practical implications. In Section 5, we apply PEMC
to production-grade exotic option pricing, including variance swaps pricing under stochastic (local)
volatility models and the pricing of swaptions under the HJM framework, as well as an ambulance
diversion problem. We conclude the paper in Section 6 with discussions on broader implications and
potential directions for future research.

2. The Prediction-Enhanced Monte Carlo Framework

We provide an overview and motivational explanation of our PEMC framework. Suppose we want
to produce an unbiased evaluation of the quantity

µ(θ) = Eθ[fθ(Y)] (1)

for arbitrary, potentially high-dimensional parameter θ ∈ Θ ⊆ Rdθ , where Θ is the parameter
space. Here, Y ∈ Rdy represents a high-dimensional random vector whose probability distribution
is parameterized by Eθ and fθ is the evaluation function Rdy → R. In general, both fθ and Eθ can
depend on θ. The goal is to produce an unbiased estimate of µ(θ) for any θ ∈ Θ, and the primary
bottleneck stems from costly simulation of Y .

2.1. Existing Challenges of MC, ML, and CV. When Y can be simulated and fθ evaluated,
then standard MC amounts to generating many fθ(Y i), i = 1, . . . , n and outputting their average.
This approach is unbiased and its statistical error can be quantified straightforwardly via standard
confidence intervals. However, it is demanding when evaluating fθ and simulating Y is expensive.

To reduce computation, one can approximate µ(θ) with a ML regression model, say µ̂(θ), which
can be evaluated more cheaply than simulating many fθ(Y i)’s. This natural approach, however,
would face challenges at multiple levels when reliability and error quantification is important: From
a theoretical standpoint, ML generalization bounds typically assess training errors only within the
model class, i.e., µ̂(θ)− µ∗(θ) where µ∗(·) is the best in-class model that can be different from µ(·).
Moreover, even assuming µ∗(·) is a “rich" class, these bounds still only assess errors in an aggregate,
worst-case fashion, i.e., high-probability bounds treating θ as a random covariate. On the practical
front, training-testing split or cross-validation succumbs to similar issues, in that it cannot measure
bias against µ(·), nor at the level of each θ. That is, in terms of reliability and uncertainty handling,
MC appears superior by providing accurate, straightforward and instance-specific error assessment on
each estimate of µ(θ). None of these advantages are available for ML despite its computational edge.

An idea to leverage the respective advantages of MC and ML is to use CV which, as mentioned
in Section 1, is a classical variance reduction method. CV aims to reduce the error of each MC run,

PREDICTION-ENHANCED MONTE CARLO 5

consequently the required replication size, by utilizing information from “auxiliary” simulation outputs.
Specifically, in generating fθ(Y i), suppose we can also generate auxiliary output Xi and evaluate
g(θ,Xi) for some function g. Then we can use fθ(Y i)−g(θ,Xi)+E[g(θ,X)] as an unbiased replicate
for Eθ[fθ(Y)]. In particular, if fθ(Y) and g(θ,X) are highly correlated, this replicate will have a
smaller variance than fθ(Y i).

Naturally, one can think of using ML to train a good predictor g(θ,X) for fθ(Y), which would
be highly correlated with fθ(Y) and serve as an effective CV. However, taking aside the question of
how to construct X and g, the CV method requires knowledge of Eθ[g(θ,X)], the closed-from mean
on the auxiliary output. This knowledge is a key requirement for CV to achieve variance reduction.
Yet, it is seldom available and has apparently severely limited the historical applicability of CV [62]
and arguably even the more recent ML-inspired approaches [132, 124, 89].

2.2. Our Remedy and Requirements. Our PEMC aims to leverage the CV idea, with a twist to
circumvent the need on the closed-form mean knowledge in order to allow for effective integration of
MC with modern ML. This requires crucially a scheme-wide cost-aware view on variance reduction.
Concretely, PEMC aims to estimate (1) by

PEMC(θ) :=
1

n

n∑
i=1

(
fθ(Y i)− g(θ,Xi)

)
+

1

N

N∑
j=1

g(θ, X̃j). (2)

Here, X is an auxiliary variable that is dependent on Y . Suppose, for now, that we are given
the g function and the X variable. In equation (2), each pair of (Xi,Y i) is coupled and simulated
together. On the other hand, each X̃j is simulated independently from all (Xi,Y i)’s, and has the
same marginal distribution as X. In this case, it is straightforward to see that (2) is an unbiased
estimator of (1). On the other hand, in terms of cost efficiency, the total simulation cost consists of

[cost of generating each fθ(Y i)− g(θ,Xi)]× n+ [cost of generating each g(θ, X̃j)]×N (3)

while the total variance is
V ar(fθ(Y i)− g(θ,Xi))

n
+

V ar(g(θ, X̃j))

N
(4)

Suppose that g and X are designed such that the cost of generating each g(θ, X̃j) is relatively
negligible compared to each original MC target replicate fθ(Y i). Then, the total cost (3) will become
approximately [cost of evaluating each fθ(Y i)−g(θ,Xi)]×n, while the total variance (4) will become
approximately V ar(fθ(Y i) − g(θ,Xi))/n. In this case, the cost-variance structure is the same as
the conventional CV method: If g(θ,X) is a good predictor for fθ(Y), then V ar(fθ(Y i)− g(θ,Xi))
is smaller than V ar(fθ(Y i)) and thus we attain a variance reduction to the overall estimator. Like
in the conventional CV method, to achieve a total reduction from V ar(fθ(Y i))/n to V ar(fθ(Y i)−
g(θ,Xi))/n, we generate n samples of fθ(Y i) − g(θ,Xi), i.e., variance reduction is achieved per
replication.

While the above depicts the idealized situation where we assume away the cost of generating
g(θ, X̃j), it provides guidance on what we need practically to elicit a cost-variance structure in (2),
as revealed by (3) and (4), that is more favorable than naive MC. First, we need g(θ,X) to serve
as a good predictor for fθ(Y), but also that X has a marginal distribution that is both efficiently
simulatable and highly parallelizable, allowing a large number N of independent samples of X̃j with
the same marginal as X to be generated at low cost. To this end, the selection of an appropriate X
is a pivotal component of PEMC, analogous to feature selection in common ML tasks but with the
additional need of being an efficiently simulatable, parallelizable random variable. Finding a good X
often requires domain knowledge. In particular, given the whole path Y , one can choose X := ϕ(Y) to
be some low-dimensional transformation ϕ of Y (e.g., ingredients for constructing Y). For instance, for
stochastic diferential equations (SDEs), one can define X as the sum of driving Brownian increments

6 Li et al.

that generate Y . This choice could capture a substantial portion of the SDE’s variance, making X
a good feature for predicting f(Y), while its Gaussianity allows it to be generated cheaply and in
parallel.

Second, we require a function g to convert θ and X into a good predictor for fθ(Y). In this work,
g is pre-trained using a squared-error loss, with MC sample drawn under (X,Y) ∼ Pθ for various
θ ∼ Θ, which aims to obtain a function g

(
θ,X

)
≈ Eθ

[
fθ
(
Y
)∣∣θ,X]. Note that this pre-training can

be resource-consuming and takes significant amount of efforts. However, once this pre-training is done,
the function g and our approach can be used to improve the efficiency in evaluating µ(θ) for any
θ. For example, in the context of option pricing, the pre-trained g can be stored as part of a model
library tailored to a specific class of exotic options, enabling PEMC to be applied directly whenever
new parameter configurations arise.

3. An Illustrative Case Study: Pricing Asian Options with PEMC

In this section, we employ Asian option pricing as a running example to explain the detailed
steps and their implications in PEMC. Asian options are path-dependent derivatives whose payoffs
depend on the average price of the underlying asset over a specified period. As mentioned in [23] and
[45], closed-form solutions for pricing arithmetic average Asian options are generally not available.
However, when the asset price dynamic follows a geometric Brownian motion (GBM), there exists an
excellent CV candidate, using the geometric average instead of the arithmetic average, whose mean is
precisely known via the Black-Scholes formula. This latter case often serves as the “textbook" example
to demonstrate the power of CV [61]. As an important message, our case study here illustrates how
PEMC can achieve a comparable level of improvements as the “textbook" CV, for evaluating arithmetic
average Asian option price when the dynamics does not follow GBM. In other words, PEMC is capable
to extend the scope of classical CV to potentially a much wider range of problems.

3.1. Problem Setup. The quantity of interest is an evaluation that can be expressed via:

Option Price(θ) = Erisk neutral measure(θ)[fpayoff(θ)(Y)], (5)

where the risk neural measure is a probability measure where all financial securities are valued as if
investors are indifferent to risk, and thus all assets are assumed to earn the risk-free rate [40].1 For
Asian option, we can specify the framework as:

(1) Model Parameters θmodel: These are the parameters that specify the simulation or the
stochastic model of the underlying process Y (e.g., asset value time series). For instance, in a
Heston model [70], the price process St and the instantaneous volatility process νt are jointly
modeled:

dSt =rStdt+
√
νtStdW

S
t

dνt =κ(η − νt)dt+ δ
√
νtdW

ν
t (6)

The model parameter θmodel is thus 5 dimensional θmodel := (r, η, δ, ρ, κ) ∈ R5. It specifies the
risk neutral drift r, the long-run average variance η, the volatility of volatility δ, the correlation
ρ of between WS and W ν , and the mean reversion rate κ. In options pricing, these parameters
are typically calibrated to fit market data and then used to generate sample paths Y := {St}t.
Thus θmodel governs and describes E risk neutral measure that generates Y .

(2) Simulation Parameters θsimulation: These parameters also specify Erisk neutral measure. The
distinction between θsimulation and θmodel is somewhat artificial, primarily stemming from the
convention that not all simulation parameters are calibrated externally, but rather serve as
hyperparameters of the MC simulation itself (either customized or directly observed). For

1Under this measure, prices of financial securities are the discounted expected values of their future payoffs.

PREDICTION-ENHANCED MONTE CARLO 7

example, when one simulates the Heston model above using Euler discretization scheme,2 we
use θsimulation to specify the initial stock price S0, the initial volatility ν0, the time horizon T ,
and discretization time step ∆t. The choice of these parameters can impact both the accuracy
and efficiency of the simulation. While not typically part of the model calibration process,
these parameters also play a crucial role in describing risk-neutral measure.

(3) Payoff Function Parameters θpayoff: This parameter θpayoff parametrizes the payoff function
fθpayoff . In option pricing, this specifies the details of the contract. For example, given the full
price path Y := {St}t, the payoff function for an arithmetic Asian options takes the form

PA({St}t) = max

(
1

nD

nD∑
i=1

Sti −K, 0

)
(7)

where θpayoff specifies the strike level K, the sampling frequency nD and the observation dates
{ti}i∈[nD]. Notice we have simply omitted the discount factor e−rT . Note that the discrete
sampling defined by the payoff does not necessarily determine the Euler discretization in time
and in fact the latter is usually much more frequent for accuracy.

Having specified the distinct roles of θmodel, θsimulation and θpayoff, we will henceforth refer to
them collectively as θ when no ambiguity arises.

3.2. Feature Engineering to Design X. We now follow the general ideas laid out in Section 2.2,
starting with the creation of the variable X to couple with Y . As described in Section 2.2, we want to
find some input feature X := ϕ(Y) that is some low-dimensional transformation ϕ of Y with:

• Property 1: X can be regarded as a reasonable predictor for fθpayoff(Y).
• Property 2: In contrast to that of Y , the marginal distribution of X allows for efficient and

parallelizable simulation.

To this end, we take X as the sum of two correlated Brownian increments driving (6), motivated
by two key properties:

• Predictability: The sum of Brownian increments explains away a portion of the variance of
the SDE.

• Marginal simulation: The sum of two Brownian increments follows a correlated Gaussian
distribution, which can be generated efficiently.

More precisely, when sampling Y , we collect X to be a two-dimensional vector consisting of

WS
T :=

T/∆t∑
j=1

∆WS
j∆t and W ν

T :=

T/∆t∑
j=1

∆W ν
j∆t,

simulated during each step of the Euler scheme with discretization scale ∆t. The marginal of X is
simply a two-dimensional Gaussian: X√

T
∼ N

(
0, [1 ρ

ρ 1]
)
.

Using Brownian increments, while natural, is not the only choice. As with most ML tasks, feature
engineering that leverages domain expertise can yield better results. We illustrate with another
example, the pricing of a floating strike lookback call option, under the Heston model (6). Here, the
option payoff is given by:

f({St}t) = max(ST − min
0≤t≤T

St, 0)

2As mentioned in [45], Euler scheme was the primary method for simulation of Heston model until the exact simulation
of [31] is developed. However, due to its significant computational demands, the exact method is less commonly used in
practice and simpler, biased simulation method such as Quadratic Exponential [3] or Euler scheme remains prevalent
(see, e.g., [92]).

8 Li et al.

where St is the asset price process and T is the option maturity. A good choice of feature could be:

X = (WS
T , min

0≤t≤T
(r − η/2)t+

√
ηWS

t).

The rationale behind the construction of min0≤t≤T (r− η/2)t+
√
ηWS

t term is grounded in the domain
knowledge of the Heston model. Specifically, since η represents the mean-reverting level of variance
process νt, we may approximate νt ≈ η (i.e., assume fixed volatility) and simplify the asset price
process to a GBM:

St ≈ S0e
(r−η/2)t+

√
ηWS

t and min
0≤t≤T

St ≈ S0e
min0≤t≤T (r−η/2)t+

√
ηWS

t .

This approximation leads to the expression f({St}t) ≈ S0e
(r−ν/2)T+

√
ν[X]1 − S0e

[X]2 , which could
serve as a potentially effective approximation of f({St}t). This corresponds directly to Property 1
in the construction of X in 3.3. For Property 2, the marginal distribution of X permits efficient
and parallelizable simulation. In particular, applying Girsanov’s Theorem enables one to derive a
closed-form expression for the joint density of ([X]1, [X]2) [79]. This result makes it straightforward
to sample these components directly.

3.3. Building Prediction Model. We now focus on the pre-training phase of our prediction model.
The data generation and model training process can be outlined through the following key steps:

(1) We first define a parameter space Θ that encompasses all combinations of θ := (θmodel,θsimulation,θpayoff)
that are of practical interest. This space covers the range of parameters that would likely be
encountered in real-world pricing scenarios on a daily, weekly or monthly basis, depending on
the model update frequency.

(2) We then draw samples of θi from Θ, using uniform sampling or any measure that ensures
comprehensive coverage. For each sampled parameter set, we generate one pair 3 of Y (θi) and
its corresponding X(θi) := ϕ(Y (θi)). It is important to note that X and Y are coupled in
this generation process.

(3) For each generated pair, we compute the payoff fθi,payoff(Y (θi)), which serves as a label in our
training data. The corresponding feature vector is comprised of (θi,model,θi,simulation,θi,payoff,X(θi)).

(4) This process is repeated Ntrain times to generate training dataset which consists of Ntrain pairs
of

featurei :=(θi,model,θi,simulation,θi,payoff,X(θi))

labeli :=fθi,payoff(Y (θi))

for i ∈ [Ntrain].
(5) The ML model g is then trained to minimize the MSE loss and saved:

min
g

1

Ntrain

∑
i∈[Ntrain]

(labeli − g(featurei))2. (8)

The essential steps are summarized in Algorithm 1. While the data generation process can be
time-intensive due to the complexity of Y , it is conducted offline during the pre-training phase. This
approach minimizes its impact on real-time pricing applications by effectively trading memory usage
for computational speed during execution.

This pre-training setup presents an ideal scenario for ML applications. It is important to also
note that PEMC does not require g to take specific forms. However, the convex and differentiable
nature of the loss function (i.e., squared loss), the large supply of data (i.e., from Monte Carlo
simulation), and the need for expressiveness of the model family make neural networks (NNs) an ideal
choice. For training NNs, various optimization techniques and architectural enhancements—such as

3You could also generate multiple pair of (Y (θi),X(θi)) under the same sampled θi.

PREDICTION-ENHANCED MONTE CARLO 9

Algorithm 1 Prediction Model Training in PEMC

1: procedure DataGeneration(Ntrain,Θ)
2: Initialize empty datasets (features, labels)
3: for i = 1 to Ntrain do
4: Sample parameters θi ∼ Θ uniformly
5: Generate X(θi),Y (θi) ∼ E risk neutral measure(θi)

6: labeli ← fθi,payoff(Y (θi))
7: featurei ← (θi,model,θi,simulation,θi,payoff,X(θi))
8: Store (featurei, labeli) to (features, labels)
9: end for

10: return datasets (features, labels)
11: end procedure

12: procedure Training(features, labels)
13: Initialize model g
14: Ntrain ← length(features)
15: Minimize: ming

1
Ntrain

∑
i∈[Ntrain]

(labeli − g(featurei))2

16: return trained model g
17: end procedure

the Adam optimizer [81], batch normalization [76], and skip connections [65]—can be employed to
improve performance. In fact, recent advancements in ML technologies have made the training process
remarkably accessible and efficient. The availability of open-source, user-friendly frameworks like
PyTorch [105], TensorFlow [1], and JAX [24]—coupled with GPU acceleration and highly optimized
C++ backends—has dramatically simplified the process of training models on large datasets. These
frameworks support recent neural network architectures, such as Convolutional Neural Networks
(CNNs) [84], Residual Networks (ResNets) [65], and Transformers [131], as well as various Stochastic
Gradient Descent (SGD) optimization algorithms [21]. In applications, we only utilized well-established
and widely recognized NN structures that are now considered common. These models can typically be
implemented using just a few lines of code, as they have been incorporated into existing packages and
extensively optimized.

3.4. Evaluation. Once we finish the pre-training phase, the prediction model is stored and used
on-the-fly in the evaluation process as follows:

(1) A specific parameter θ := (θmodel,θsimulation,θpayoff) ∈ Θ is given, e.g., calibrated from market
data in real time, and needs to be used for pricing.

(2) Generate n pairs of (Y i,Xi)i∈[n], from Erisk neutral measure(θ). Here we have suppressed Y ’s
dependency on θ for convenience.

(3) Based on the marginal distribution of X, independently generate N additional samples of
(X̃j)j∈[N] from Erisk neutral measure(θ), directly according to its marginal distribution. These
samples are independent of the previous data (Y i,Xi)i∈[n].

(4) Utilize the pre-trained model g to evaluate the PEMC estimator:

PEMC :=
1

n

n∑
i=1

(f(Y i)− g(Xi)) +
1

N

N∑
j=1

g(X̃j) (9)

For notational simplicity, we have written g(X) instead of g(θmodel,θsimulation,θpayoff,X), and f(Y)
instead of fθpayoff(Y). A key aspect of this procedure is the relationship between N and n. Typically,

10 Li et al.

we choose N to be one, or several orders of magnitude larger than n. The optimal choice of N versus
n, will be discussed Section 4. The PEMC evaluation step is summarized in Algorithm 2.

Algorithm 2 Evaluation Procedure in PEMC

1: procedure Evaluation(θ, n,N, g)
2: Generate i.i.d. (Y i,Xi)i∈[n] from Erisk neutral measure(θ)

3: Generate i.i.d. (X̃j)j∈[N] independently from its marginal in Erisk neutral measure(θ)

4: Compute PEMC := 1
n

∑n
i=1(f(Y i)− g(Xi)) +

1
N

∑N
j=1 g(X̃j)

5: return PEMC
6: end procedure

3.5. Overall Methodology. We now summarize our overall PEMC methodology applied to the
Asian option under the Heston model, i.e., (7), with θpayoff specifying the strike level K, the sampling
frequency nD and the observation dates {ti}i∈[nD]. The Heston model is described in (6) which
requires θmodel := (r, η, δ, ρ, κ) ∈ R5. Suppose we use an NN as the prediction model. Then, the
PEMC framework could proceed as follows:

(1) Define the parameter space Θ that encompasses realizations of

θ := (r, η, δ, ρ, κ︸ ︷︷ ︸
θmodel

, S0, ν0,∆t, T︸ ︷︷ ︸
θsimulation

,K, nD, {ti}i∈[nD]︸ ︷︷ ︸
θpayoff

)

which are of practical interest.
(2) Uniformly sample θ from Θ. This step is straightforward if the parameter space is a Cartesian

product of intervals. For each sampled θ, generate process Y := (St, νt)t using a discretization
scheme with step size ∆t, with the Heston model specified by θ.

(3) During the sampling of Y , we collect X to be the sum of Brownian increment

WS
T :=

T/∆t∑
j=1

∆WS
j∆t and W ν

T :=

T/∆t∑
j=1

∆W ν
j∆t,

simulated during each step of the Euler scheme. This makes the marginal of X simply a
two-dimensional Gaussian: X√

T
∼ N

(
0, [1 ρ

ρ 1]
)
.

(4) Save

label :=(
1

nD

nD∑
i=1

Sti −K)+

feature :=(r, η, δ, ρ, κ, S0, ν0,∆t, T ,K, nD, {ti}i∈[nD],W
S
T ,W ν

T). (10)

(5) Repeat steps 2-4 Ntrain times to generate dataset (featurei, labeli)i∈[Ntrain] of size Ntrain.
(6) Train a NN with weights w to minimize the MSE loss:

min
w

1

Ntrain

∑
i∈[Ntrain]

(labeli −NNw(featurei))2

and use ŵ to approximate

NNŵ ≈ E
[
(
1

nD

nD∑
i=1

Sti −K)+
∣∣∣∣r, η, δ, ρ, κ, S0, ν0,∆t, T ,K, nD, {ti}i∈[nD],W

S
T ,W ν

T

]
.

PREDICTION-ENHANCED MONTE CARLO 11

(7) At evaluation, given a specific θ = (r, η, δ, ρ, κ, S0, ν0,∆t, T ,K, nD, {ti}i∈[nD],W
S
T ,W ν

T) ∈ Θ,
we generate n paired samples (labeli, featurei)i∈[n] as in (10). We also generate N i.i.d.
√
TN

(
0, [1 ρ

ρ 1]
)

samples and store them as (˜feature)j∈[N].

(8) Output PEMC := 1
n

∑n
i=1(labeli −NNŵ(featurei)) +

1
N

∑N
j=1 NNŵ(˜featurej)

In Appendix B, we present numerical results on the performance comparisons of PEMC with
standard MC and CV for Asian options under GBM. In this case, an excellent CV using the Black-
Scholes formula is available under the standard CV framework for us to benchmark against. At the
same time, in Section 5, we present results on more realistic and technically complex applications,
including several production-grade exotic options that are vastly more complex than Asian options.

4. Analysis and Performance

In this section, we provide a detailed and comprehensive analysis of the PEMC estimator. All
omitted proofs are delegated to Appendix A. All properties of PEMC discussed here pertain to the
evaluation stage, where θ is arbitrary but fixed. Henceforth, we omit the explicit dependence on θ in
the notation (e.g., writing Y in place of Y (θ)).

4.1. Bias Analysis.

Theorem 1 (Unbiasedness). The PEMC estimator in equation (9), is unbiased:

E
[
1

n

n∑
i=1

(f(Y i)− g(Xi)) +
1

N

N∑
j=1

g(X̃j)

]
= E[f(Y)]

Proof. Proof First note that g is pre-trained. The proof then follows since Xi and X̃j have the same
marginal distribution for any i, j. □

Given the unbiased nature of PEMC, the analysis of PEMC as a Monte Carlo method primarily
hinges on its variances and computational costs.

4.2. Variance Analysis. To facilitate the analysis, we first introduce some necessary notation.

Definition 2. Given function f that takes input Y and g that takes input X (so both f, g are
considered fixed here), we denote

σ2
f−g := Var(f(Y)− g(X)), σ2

f := Var(f(Y)), and σ2
g := Var(g(X)).

Similarly, we denote cost of generating a coupled sample f(Y) − g(X) as cf−g, the cost of
generating f(Y) as cf and the cost of generating g(X) as cg.

Lemma 1. Using the notations from 2, we have

Cov(f(Y), g(X)) =
σ2
f + σ2

g − σ2
f−g

2
.

We make two remarks here. First, since we generally obtain X in the same process during the
generation of Y , thus typically in either sense of the cost, we have cf−g ≈ cf . Second, the term cost
is intentionally left unspecified because its interpretation varies depending on the context. In some
context, cost refers to the sample size, while in others it represents the wall-clock time required to
generate and evaluate all the samples, making the concept of cost instance dependent. Therefore, for
now, we use cost as an umbrella term to capture various meanings under different contexts.

Lemma 2. The Variance of the PEMC estimator in equation (9) is

Var(PEMC) =
1

n
σ2
f−g +

1

N
σ2
g .

12 Li et al.

Proof. Proof First note that g is pre-trained. Moreover, in the evaluation phase, data (Y i,Xi)i∈[n]

are generated independent of (X̃j)j∈[N]. □

Having established the unbiasedness and the variance form of the PEMC estimator, we could
turn to inference. In particular, using consistent estimates of variance, the application of the central
limit theorem enables the construction of valid asymptotic confidence intervals. Moreover, a range
of inferential techniques may be employed—such as deriving high-probability bounds or other non-
asymptotic guarantees—the asymptotic confidence interval construction suffices to illustrate the point.
The approach follows closely from results in prediction-powered inference [6].

Theorem 3 (Asymptotic Confidence Intervals). In the set up of the evaluation algorithm 2, given the
prediction model g, (Y i,Xi)i∈[n] and (X̃j)j∈[N], we define

σ̂2
f−g =

1

n

n∑
i=1

(
f(Y i)− g(Xi)−

(1
n

n∑
i′=1

f(Y i′)− g(Xi′)
))2

,

and

σ̂2
g =

1

N

N∑
j=1

(
g(X̃j)−

1

N

N∑
j′=1

g(X̃j′)
)2
,

be the respective sample variance. Let z1−α/2 denote the (1− α/2)-quantile of the standard normal
distribution. Then, the interval(

PEMC − z1−α/2

√
σ̂2
f−g

n
+

σ̂2
g

N
, PEMC + z1−α/2

√
σ̂2
f−g

n
+

σ̂2
g

N

)
,

is an asymptotically valid 1− α confidence interval for E[f(Y)], as n,N →∞.

Proof. Proof Theorem 1 establishes PEMC is unbiased. Moreover, σ̂2
f−g, σ̂

2
g are consistent estimates of

σ2
f−g, σ

2
g , the results follows from Lemma 2 and the central limit theorem and Slutsky’s theorem. □

4.3. Variance Reduction. Having analyzed the bias and variance of the PEMC estimator, we now
turn to a fundamental practical question: Under a fixed cost budget—whether measured in terms of
the number of samples, computational time, or other limited resources—when does PEMC outperform
standard Monte Carlo (MC)? Our aim is to understand how PEMC’s variance reduction scales with
its cost, thereby identifying regimes where PEMC emerges as more efficient than standard MC. To
this end, we first determine the optimal allocation of the sample sizes n (the number of expensive full
simulations) and N (the number of cheap, feature-only evaluations) within the PEMC framework,
given a total resource budget B. This investigation provides a guideline for parameter selection and
reveals conditions under which PEMC’s gains are maximized.

Lemma 3. Assuming n,N ∈ R+ and cg, cf−g ∈ R+, the optimal allocation between n and N for
PEMC, for any positive budget B, follows as

n

N
=

σf−g

σg
·
√

cg
cf−g

. (11)

Proof. Proof By relaxing the constraints to n,N ∈ R+, the optimization problem

min
n>0,N>0

1

n
σ2
f−g +

1

N
σ2
g .

s.t. ncf−g +Ncg ≤ B.

is jointly convex in n,N ∈ R+. The objective value also approaches infinity as N → 0 or n → 0.
Consequently, the strict convexity ensures the existence of a global minimizer in the interior and
directly solving the Lagrangian gives us the result. □

PREDICTION-ENHANCED MONTE CARLO 13

In practice, cf−g ≫ cg often holds which suggests one should set N ≫ n according to Lemma
3. While Lemma 3 relies on treating n,N ∈ R+ as continuous—ignoring the integer constraints
n,N ∈ N+— this continuous approximation still provides valuable guidance when n,N ≥ 1. In fact, in
practice, we found the ratio suggested by Lemma 3 guides near-optimal parameter selection. However,
the standard MC corresponds to the case N = 0, a scenario not covered by Lemma 3, and thus requires
separate consideration. Building on Lemma 3, we can estimate an upper bound on the variance
reduction PEMC can achieve relative to standard MC under these idealized assumptions.

Lemma 4. Assume cf−g = cf . In the same setup as Lemma 3, the variance ratio between PEMC
under the optimal allocation and standard MC follows as

Var(PEMC)

Var(MC)
=

σ2
f−g

σ2
f

(
1 +

σg

σf−g
·
√

cg
cf

)
+

σ2
g

σ2
f

(
σf−g

σg
·
√

cg
cf

+
cg
cf

)
. (12)

Proof. Proof Based on the results of Lemma 3, we can deduce that this ratio again does not depend
on the budget B, so we omit its dependence in the statement. Moreover, we can conveniently choose
a budget of the form B = n0cf−g + n0

σg

σf−g
·
√

cf−g

cg
cg which gives an allocation of n = n0 and

N = n0
σg

σf−g
·
√

cf−g

cg
for PEMC in accordance with Lemma 3, while comparing with B/cf samples for

standard MC. The rest follows from Lemma 2 and the assumption cf = cf−g. □

Based on the result of Lemma 4, a natural question arises: how can we gauge σ2
f−g

σ2
f

or σ2
g

σ2
f

in
practice? How are these ratios tied to the quality of the predictive model g in PEMC? As we shall see,
the extent of variance reduction that PEMC can deliver is linked to how well g is trained. To illustrate
this, we first consider an ideal scenario where g is trained to the optimum, i.e., the true regression
function.

Lemma 5. Suppose cf−g = cf , f(Y) is square-integrable and g = E[f(Y) |X]. Define ρ := corr(f, g)

and c :=
cg
cf

. Then we have ρ =
σg

σf
and the ratio Var(PEMC)

Var(MC) in Lemma 4 reduces to

r(ρ, c) :=(1− ρ2)

(
1 +

ρ√
1− ρ2

·
√
c

)
+ ρ2

(√
1− ρ2

ρ
·
√
c+ c

)
. (13)

Proof. Proof When g = E[f(Y) |X] is the true regressor, i.e.,

g = argmin
h measurable

E[(f(Y)− h(X))2],

and f is square-integrable, it follows that E[(f − g)h] = 0 for all square-integrable h. Plug in h = g,
we obtain Cov(f − g, g) = 0. Consequently we have ρ := corr(f, g) =

σg

σf
and σ2

f = σ2
f−g + σ2

g , which
further implies σg = ρ2σ2

f and σ2
f−g = (1− ρ2)σ2

f . The rest follows from cf−g = cf . □

Lemma 5 says that the variance reduction of PEMC relative to standard MC can be approximated
by the function r(ρ, c) in (13), where ρ = σg/σf captures the predictive power of g(X) for f(Y), and
c = cg/cf quantifies the relative cost of evaluating g(X) versus generating full samples for f(Y). In
Figure 1, we visualize the variance reduction function r(ρ, c) for ρ, c ∈ (0, 1). On the left is a contour plot
of r(ρ, c) where the red line traces the curve r(ρ, c) = 1, corresponding to the “break-even" boundary
where PEMC’s variance matches that of MC. Regions below this line, {(ρ, r) ∈ [0, 1]2|r(ρ, c) < 1},
represent regimes of ρ and c where PEMC achieves variance reduction, i.e., where ρ is sufficiently
large and c is sufficiently small. On the right, the graph of r(ρ, c) as a function of ρ when c = 0.001
provides a clear benchmark: a correlation ρ = 0.5 yields approximately 22.2% variance reduction,
while ρ = 0.7 yields about 45.8%. In our PEMC applications, we design feature X and predictive
model g so that, for most θ ∈ Θ during evaluation, we can safely gauge that c falls between 10−2 to

14 Li et al.

10−3 and ρ exceeds 0.5. In these regions, Lemma 3 suggests choosing N/n in the range of 5 to 20 for
near-optimal performance. In our experiments, a ratio of N = 10n proved effective.

Figure 1. Variance Reduction Function r(ρ, c). Left: A contour map of the variance
reduction ratio r(ρ, c) as a function of the correlation ρ = σg/σf and relative cost
c = cg/cf . The red curve indicates the level set r(ρ, c) = 1; the regimes where PEMC
outperforms standard MC lie below the curve. Right: A graph of r(ρ, c) as a function
of ρ when c = 10−3.

4.3.1. Learning Theory Estimates. The statements in Lemma 3 assume that g represents the true
regression function E[f |X]. In practice, however, g is obtained through a learning procedure applied to
finite training samples, and thus will only approximate the true conditional expectation. Consequently,
any practical implementation of PEMC must account for the approximation and estimation errors
inherent in the ML training process, and this error also varies with θ. To rigorously quantify these
effects, one can invoke tools from statistical learning theory, such as uniform convergence bounds,
VC-dimension, or Rademacher complexities [129, 13, 95]. These quantities, by relating the complexity
of the function class used to represent g and the available training sample size Ntrain, lead to error
bounds that ensure, with high probability, that the trained predictor g is close to the true regression
function within a controlled margin. We avoid delving deeply into them so as not to distract from our
main theme. Instead, we adopt a standard, off-the-shelf and ‘placeholder’-type result, whose proof is
detailed in the Appendix, that illustrates the typical form of guarantees one could expect from PEMC.

Lemma 6. Under the regularity conditions specified in the Appendix, for any ϵ, δ > 0, there exists a
sufficiently large sample size Ntrain and a suitably chosen neural network class from which we select
and train a predictor g on Ntrain samples, such that

Var(PEMC)

Var(MC)
≤ r(ρ, c) + ϵ

for a randomly evaluated θ ∼ Θ with probability at least 1− δ.

4.4. Control Variate Coefficient. In this section we explore a connection between the PEMC
framework and traditional Control Variate (CV) methods. In (9), note that we could introduce a free
parameter a to create a variant:

PEMC(a) :=
1

n

n∑
i=1

(f(Y i)− ag(Xi)) +
1

N

N∑
j=1

ag(X̃j) (14)

PREDICTION-ENHANCED MONTE CARLO 15

The introduction of a is analogous to CV approaches, where the parameter a does not introduce bias
but can be tuned to minimize variance. In PEMC, this viewpoint may appear somewhat redundant
since ag is also a valid prediction model, which suggests a would be chosen implicitly during the training
of the prediction model. Nevertheless, suppose g is fixed. Then 1

n

∑n
i=1−g(Xi) +

1
N

∑N
j=1 g(X̃j) can

be viewed as a readily available, zero-mean control variate for 1
n

∑n
i=1 f(Y i). We can then choose a

which minimizes the variance. The optimal a∗ then is:

a∗ =
Cov(f(Y), g(X))

(n/N + 1)Var(g(X))
.

In the ideal scenario, we have N ≫ n and g(X) = E[f(Y)|X], which would imply Cov(f(Y) −
g(X), g(X)) = 0 and Cov(f(Y), g(X)) = Var(g(X)). This leads to a∗ = 1

1+n/N ≈ 1, the default
choice of PEMC, i.e., a = 1.

5. Applications

After establishing the theoretical foundations of PEMC and demonstrating its effectiveness in
controlled environments, we now apply it to real-world financial scenarios where the complexity of
models often renders standard variance reduction techniques difficult or unavailable. In this section,
we first examine PEMC in practice through two complex options pricing problems. In particular, we
examine variance swaps pricing under stochastic local volatility models [47, 44, 57], and the pricing of
swaptions under the Heath-Jarrow-Morton (HJM) framework [34]. In both cases, the path-dependent
nature of the contracts and the complexity of the model dynamics make traditional control variates
difficult.

5.1. Variance Swaps in stochastic local vol models. Variance swaps are financial derivatives
that enable investors to trade future realized volatility against current implied volatility [14]. Unlike
traditional options, which derive their value from the underlying asset’s price, variance swaps are
based on the variance of the asset’s returns over a specified period [43]. This unique structure
allows for pure exposure to volatility, making variance swaps valuable tools for risk management and
speculative strategies [57, 111]. In this subsection, we focus on using PEMC to price variance swaps
under a stochastic local volatility (SLV) model [114], as closed-form formulas exist for variance swaps
in stochastic volatility models such as Heston [137], but not for SLV [128] which provides greater
flexibility through a data-intensive, non-parametric specification of the volatility surface [57]. SLV
models emerged as a hybrid approach that combines the market-implied local volatility surface with
stochastic volatility dynamics [64], providing practitioners with greater calibration flexibility and more
accurate price reproduction across strike-maturity ranges [114].

Unlike the Heston model’s parsimonious parameter set, SLV requires handling a full volatility
surface discretized on a dense 2D grid, effectively making the parameter space Θ for PEMC high-
dimensional. To efficiently process this grid-structured volatility data, we adopt a Convolutional Neural
Network (CNN) architecture [84] for PEMC, effectively feeding the local vol surface as an image into
predictive modeling. The CNNs are particularly well-suited for this task as they naturally exploit the
spatial relationships in the volatility surface, similar to their success in image processing tasks [65, 82].

Under the SLV model, we adopt the following SDEs for simulating the asset price {St}t:

dSt = rStdt+ σ(St, t)e
νtStdW

S
t , (15)

dνt = κ(ηt − νt)dt+ δdW ν
t , (16)

with ⟨dWS
t ,dW ν

t ⟩ = ρdt and ηt := − δ2

2κ (1 + e−2κt). Here σ(·, ·) : R × R+ → R+ is 2D function
representing the (interpolated) local volatility surface and exp(νt) is a stochastic multiplier with
exp(ν0) = 1 and E[e2νt] = 1. In practice, local volatility surfaces are calibrated to and stored as
discrete two-dimensional grids indexed by asset prices (spot) and time. During simulation, these

16 Li et al.

discrete values are interpolated as needed to obtain volatilities at arbitrary price-time points [37]. For
our PEMC implementation, we treat this discrete grid as part of our input parameter θmodel, reflecting
how the market-calibrated surfaces would be used in practice. While local volatility models [47, 44]
and their calibration to market data constitute an extensive research area in their own right, our focus
here is on the PEMC implementation. Thus, we assume a calibrated local volatility has been given
for evaluation, regardless of the method used to obtain it. Following practical conventions, we store
σ(·, ·) on a |S| × |T | grid, where S contains |S| equally-spaced price points in [Smin

surface, S
max
surface] and T

contains |T | equally-spaced time points in [tmin
surface, t

max
surface]. At each point on the grid, we store the

value of local volatility according to [34]:

σ2
base(x, t) =

∑2
i=0 piτie

−x2/(2tτ2
i)−tτ2

i /8∑2
i=0(pi/τi)e

−x2/(2tτ2
i)−tτ2

i /8
, with p0 := 1− p1 − p2, x := log(St/S0), (17)

for p0 = 0.3, p1 = 0.5, p2 = 0.2, τ0 = 0.4, τ1 = 0.3, τ2 = 0.6 as in Figure 2 in [34]. While this analytical
form (17) is used in our data-generating process, it is important to note that PEMC treats the surface
as any market-calibrated volatility surface - accessing it only through its discrete grid values. When
sampling θ ∼ Θ to produce σ grid, we add a N (0, ξ2) noise independently to all the |S| × |T | points
in the grid, on top of their baseline value σbase (17). A path is then generated by Euler’s scheme:

νt+∆t ← νt + κ(ηt − νt)∆t+ δ∆W ν
t ,

St+∆t ← St exp
((

r − 1
2 ν̃

2
t+∆t

)
∆t+ ν̃t+∆t∆WS

t

)
, where ν̃t+∆t = σ̂(St, t)e

νt+∆t ,

with (∆WS
t ,∆W ν

t)
i.i.d∼
√
∆t · N (0, [1 ρ

ρ 1]), and σ̂(St, t) obtained by interpolations of the grid σ. The
input (θ,X) can be represented as

featurei = {{σ2(s, t)}s∈S,t∈T︸ ︷︷ ︸
surface info

, r, δ, κ, ρ, µ︸ ︷︷ ︸
θmodel

, S0, ν0︸ ︷︷ ︸
θsimulation

, K︸︷︷︸
θpayoff

, (WS
T ,W ν

T)︸ ︷︷ ︸
X(θ)

}.

The parameters space Θ, as well as the evaluation θ, is summarized in Table 1.

Table 1. Parameter Setup in SLV Model

mode ξ S0 r κ λ ρ T , ∆t
Ntrain = 3, 000, 000 0.02 [50, 150] 0.02 [1.5, 4.5] [0.1, 1.0] [−0.2,−0.9]

1, 1/252evaluation 0 100 0.02 3.0 0.5 −0.5

To handle the 2D grid of high-dimensional volatility surface data, we design a two-branch neural
network architecture, which is illustrated in Figure 2. The first branch processes the discretized
volatility surface σ2(x, t) using a CNN architecture inspired by VGG [121], which has become a
standard choice for image processing tasks and is readily available in modern deep learning packages
like PyTorch [105]. This branch then consists of two 2D convolutional layers interspersed with ReLU
activations, followed by a MaxPool2d operation for dimensionality reduction. The surface features are
then flattened through a fully connected layer to produce an embedding. The second branch handles
the remaining model parameters in (θ,X) through a series of fully connected layers with dropout
regularization, batch normalization, and ReLU activations, ultimately producing another embedding.
Finally, the two separate embeddings are then fed into a “Synthesizer" module, which combines the
information through additional fully connected layers with dropout and ReLU activations to produce
the final prediction. This architecture choice is motivated by the proven effectiveness of CNNs in
handling grid-structured data [84, 65], and particularly the VGG architecture’s success in extracting
hierarchical features while maintaining relative simplicity [121]. The details of NN architecture are
summarized in Table 12.

PREDICTION-ENHANCED MONTE CARLO 17

Figure 2. Neural Network architecture for the SLV Model.

Table 2. Neural Network Architecture Parameters

CNN Branch Feed-forward Branch
kernel size: 3, stride: 1, padding: 1
max pooling (kernel: 2, stride: 2, padding: 0)

hidden dim: 512
output dim: 128

Finally, we evaluate PEMC’s performance in the SLV setting across sample sizes n ∈ {1000, 2000,
4000, 8000, 10000, 20000} with N = 10n, benchmarking against a ground truth computed from 5× 107

MC samples. The results, based on 200 independent experiments and shown in Table 3, reveal that
PEMC’s effectiveness persists even in this more complex setting. Despite the added complexity of
handling high-dimensional volatility surfaces, PEMC achieves a 30-40% reduction in mean squared
error compared to standard MC, demonstrating its robustness as a variance reduction technique across
different model frameworks.

5.2. Swaptions in HJM Models. Interest rate derivatives play a crucial role in financial markets,
with swaptions being particularly important instruments for managing interest rate risk [29]. A
swaption gives its holder the right to enter into an interest rate swap at a future date, providing

18 Li et al.

Table 3. RMSE from 200 Experiments for Pricing Variance Swap under the SLV
Model

Method n = 1000 n = 2000 n = 4000 n = 6000 n = 8000 n = 10000 n = 20000

Monte Carlo (MC) 0.0206 0.0145 0.0101 0.0075 0.0064 0.0065 0.0047
PEMC 0.0130 0.0088 0.0061 0.0055 0.0040 0.0040 0.0027

flexibility in hedging future interest rate exposures [74]. The pricing of these instruments, however,
presents significant computational challenges due to the high-dimensional nature of interest rate
modeling [5]. In this subsection, we demonstrate PEMC’s application to swaption pricing under the
Heath-Jarrow-Morton (HJM) framework [66]. The HJM model directly describes the evolution of the
entire forward rate curve, offering greater flexibility than traditional short-rate models. For illustration
purposes, we focus on a one-factor specification with exponential volatility structure [61], though the
framework readily extends to multi-factor cases. A swaption is a contract granting its holder the right,
but not the obligation, to enter into an interest rate swap at a future date. In a standard interest rate
swap, one party agrees to pay a fixed rate while receiving a floating rate, and the other party does the
opposite. Consider a swap with np fixed payment periods, each of length ∆t′, starting at time t′0 and
ending at time t′np

= t′0 +
∑np

l=1 ∆t′. The value of this swap at time t′0 is:

Vt′0
= C

(
R

np∑
l=1

B(t′0, t
′
l)∆t′ +B(t′0, t

′
np
)− 1

)
,

where C is the notional amount (contract size), R is the fixed rate, and B(t′0, t
′
l) is the discount factor

from t′0 to t′lF . A swaption provides the holder with the option to enter into this swap at t′0. The
payoff of the swaption is simply

max(0, Vt′0
),

and its expectation under the risk-neutral measure gives the price of swaptions. To specify the risk
neutral measure, one needs to model the bond price. The price of a zero-coupon bond B(t, T) maturing
at time T is given by the forward rate f(t, u) as: B(t, T) = exp

(
−
∫ T

t
f(t, u) du

)
, or equivalently

∂ logB(t,T)
∂T = −f(t, T). The HJM framework [61] then models the dynamics of forward rate curve

directly:

df(t, T) = µ(t, T) dt+ σ(t, T)⊤dW (t),

where µ(t, T) is the drift, σ(t, T) is the volatility function of the forward rate, and W (t) is a Brownian
motion. In contrast to short-rate models (e.g., Vasicek [130] or Cox-Ingersoll-Ross [39]), which only
model the dynamics of the short-term interest rate, the HJM model directly models the dynamics of
the entire term structure of interest rates [66]. The HJM model is widely used in practice because of
its flexibility in modeling interest rate derivatives like swaptions and its ability to incorporate complex
volatility structures [29, 5]. However, the model’s generality also leads to the need for sophisticated
numerical methods for simulation [61]. A key property of the HJM model is the no-arbitrage condition
[61], which specifies the drift completely by the volatility:

µ(t, T) = σ(t, T)⊤
∫ T

t

σ(t, u) du. (18)

Thus, in the HJM framework, the model is fully specified by defining the initial forward rate curve
f(0, T) and the structure of the volatility σ(t, T). In our experiment we used a simple one factor HJM
for illustration.

PREDICTION-ENHANCED MONTE CARLO 19

5.2.1. PEMC for HJM. Just as with the local volatility surface case, in practice σ(t, T) cannot be
predefined parametrically and must be calibrated from market data of caps, floors, and swaptions,
yielding a discrete grid of values. However, for demonstration purposes, we employ a classical
exponential decay specification as our baseline model inspired from [61]:

σbase(t, T) = σ0 exp(−ασ(T − t)) (19)

with σ0 and ασ as part of θ. Similarly, for a baseline initial forward curve, we use:

fbase(0, T) = f0 + cf (1− exp(−αfT)). (20)

with f0, cf , and αf part of the θ. While this analytical form serves as our data-generating process,
PEMC accesses it only through its discrete grid values with added noise. This approach mirrors our
treatment of the local volatility surface in the previous section, where we used the parametric form in
[34] solely as a realistic baseline for generating training data.

Indeed, while HJM and these analytical forms (19)-(20) are formulated in continuous time, in
practice we need to implement numerical discretization. Following the scheme in [61], one discretizes
both the time axis and the set of maturities i.e., time steps Tt = {t0, t1, . . . , tNT

} and maturity points
T = {t1, t2, . . . , tNM

} forming a time-maturity grid. In our experiment, for simplicity, we assume
they share one grid T of size |T |. Then, when sampling θ ∼ Θ, one first sample σ0, ασ, f0, cf , αf ,
then one sample the grids {σ(ti, tj)}ti≤tj ,ti,tj∈T and {f(0, ti)}ti∈T from (19) and (20) with added
noise N (0, (σ0

2(tj+5))
2) and N (0, (1

100(tj+5))
2) respectively, on top of their baseline values. The noise

level ξ = σ0

2(t+5) . Paths are then generated using the discretization scheme described in [61] (e.g.,
f(ti, tj) = f(ti−1, tj) + µ(ti−1, tj)(ti − ti−1) +

√
ti − ti−1σ(ti−1, tj)N (0, 1) where µ(ti−1, tj) is the

discretized drift term determined through (25)). We refer interested readers to [61] for the complete
derivation and implementation details of this standard simulation scheme.

For PEMC, our the parameter θ ∼ Θ includes the volatility parameters (σ0, ασ) in (19) and initial
forward curve parameters (f0, c, αf) in (20). The swaption’s fixed rate is set as R = exp(−

∑n−1
i f(0,t′i)

Tfinal−t′0
),

reflecting the common practice where swap rates are typically determined in reference to the prevailing
forward rate curve rather than being arbitrarily chosen. Here the parameters are notional amount C,
start time t′0, payment interval ∆t′, and number of payments np. The simulation uses time step ∆t up
to final maturity Tfinal. During training, parameters are sampled uniformly from the ranges specified
in Table 4 where the evaluation θ is also listed.

Table 4. Parameter Setup in HJM Model

Mode σ0 ασ f0 cf αf R C t′0 ∆t′ np ∆t T ∗

Ntrain = 3, 000, 000 [0.01, 0.03] [0.001, 0.9] [0.01, 0.03] [0.01, 0.05] [0.001, 0.9]
exp(−

∑n−1
i=0 f(0,t′i)

T∗−t′0
) 100 5 1 20 1/52 25evaluation 0.0015 100 0.02 3.0 0.5

The input for PEMC is, similar as before:

feature = {{σ(ti, tj)}ti≤tj ,ti,tj∈T︸ ︷︷ ︸
volatility structure

, σ0, ασ, f0, cf , αf︸ ︷︷ ︸
θmodel

, {f(0, ti)}ti∈T︸ ︷︷ ︸
initial forward curve

, (WS
T ,W ν

T)︸ ︷︷ ︸
X

}.

To handle both the two-dimensional grid of volatility structure σ(t, T) and the one dimensional grid
of initial forward curve f(0, T), we design a three-branch neural network architecture, illustrated in
Figure 3. The first branch, labeled“2D Function Encoder", processes the 2d volatility structure grid
using a CNN architecture with two 2D convolutional layers, each followed by batch normalization.
The branch concludes with an average pooling operation and produces an embedding. The second
branch processes the initial forward curve f(0, T) grid through a “1D Function Encoder" utilizing
1D convolutional layers - a natural choice for sequential data [84] - followed by batch normalization
and average pooling to produce another embedding. The third branch handles the remaining input

20 Li et al.

through fully connected layers with batch normalization. Finally, these three separate embeddings are
then fed into a “Synthesizer" module that combines the information through multiple fully connected
layers with batch normalization, ultimately producing the final prediction. This architecture effectively
leverages both the spatial structure of the volatility surface through 2D CNNs [121], the sequential
nature of the forward curve through 1D CNNs [103], and the scalar parameters through standard deep
learning techniques [65]. The complete network architecture is detailed in Table 13.

Figure 3. Neural network architecture for modeling Swaption payoff.

Finally, following the same evaluation methodology, we assess PEMC’s performance in the HJM
swaption pricing setting across sample sizes n ∈ {1000, 3000, 5000, 7000, 9000, 11000} with N = 10n,
using 5× 107 MC samples to establish the ground truth value. As presented in Table 6, the outcomes
from 200 independent experiments confirm that PEMC remains highly effective within the context of
interest rate derivatives. Despite the added complexity of managing both volatility structures and
forward rate curves, PEMC achieves a 45-50% reduction in RMSE to standard Monte Carlo methods.
This performance aligns with the variance reduction levels observed in our earlier examples. The
boxplot is shown in Figure 4. The consistent effectiveness of PEMC across various financial instruments
and modeling frameworks further underscores its versatility as a robust variance reduction technique.

PREDICTION-ENHANCED MONTE CARLO 21

2D function branch parame-
ters

1D function branch parame-
ters

Vector feature branch
parameters

Kernel size: (1, 3)
Stride: (1, 3)
Padding: 0
AvgPool2d kernel size: (2, 2)
AvgPool2d stride: (2, 2)
AvgPool2d padding: 0

Kernel size: 10
Stride: 3
Padding: 0
AvgPool1d kernel size: 2
AvgPool1d stride: 2
AvgPool1d padding: 0

Hidden dim: 512
Output dim: 128

Feed-forward Synthesizer Parameters
Hidden dim: 128
Output dim: 1

Table 5. Hyper-parameter setup for the neural network

Table 6. Root Mean Squared Error from 200 Experiments

Method n = 1000 n = 3000 n = 5000 n = 7000 n = 9000 n = 11000
Monte Carlo (MC) 0.0096 0.0062 0.0048 0.0039 0.0035 0.0029
PEMC 0.0055 0.0028 0.0024 0.0019 0.0018 0.0015

Figure 4. Boxplots for HJM Experiments.

5.3. Discussions, Extensions and More Examples. We conclude with several observations and
potential extensions of the PEMC framework.

5.3.1. Evaluation Metric. First, while training the neural network estimator g using mean squared
error (MSE) loss is common, it is not always clear how to interpret the resulting MSE score. Unlike
some well-established benchmarks (e.g., classification accuracy), there is no canonical threshold or
known “good” MSE value for a given problem. This ambiguity makes it challenging to determine
when the network is sufficiently trained. To address this, we can exploit the fact that g is meant to
represent the conditional expectation g = E[f | input]. If the network approximates this expectation

22 Li et al.

well, then the sample average of g(X) should be close to the sample average of f(Y) over a given
dataset. One practical diagnostic is to compute the Mean Absolute Relative Error (MARE) between
these two averages. If E[g(X)] ≈ E[f(Y)], it provides a tangible indication that g is capturing the
underlying expectation. Our empirical experience suggests this criterion is very effective in practice (a
5-1% MARE typically indicates exceptional PEMC), complementing common techniques like early
stopping in machine learning workflows. More importantly, as the we have shown in the theory, if g
closely approximates the conditional expectation, the variance reduction in PEMC is guaranteed—even
if marginally—relative to standard Monte Carlo.

5.3.2. XVA, Greeks and Quasi-Monte Carlo. Beyond pricing exotic options, this approach naturally
extends to other computationally intensive Monte Carlo settings in quantitative finance. Notably,
adjustments like Credit valuation adjustment (CVA) and more complex XVAs often require vast
simulation runs, sometimes taking days to complete [63, 4]. Integrating PEMC with a well-trained
neural network can cut these computational times drastically while preserving accuracy.

Moreover, in the pricing of exotic derivatives and other path-dependent instruments, automatic
differentiation (AD) techniques are often used to compute Greeks efficiently. By leveraging modern
deep learning frameworks—such as PyTorch or TensorFlow—that support automatic differentiation
natively, we can easily differentiate the trained network g with respect to input parameters [60]. This
enables quick and accurate sensitivity analysis without resorting to lattice-structure approximations
[136, 135] or nested simulations, which could lead to another direction of extension for PEMC.

Finally, although we have focused on standard Monte Carlo sampling, combining PEMC with
Quasi Monte Carlo (QMC) techniques may offer further variance reduction benefits [33]. However, it is
important to note that QMC methods introduce a low-discrepancy bias, thus forgoing the unbiasedness
property of pure Monte Carlo. Balancing unbiasedness with the additional variance reduction from
QMC is an intriguing direction for future research.

5.3.3. Ambulance Diversion Policies Evaluation. During the early COVID-19 surge, New York City’s
EMS system faced a drastic spatial shift in emergency calls, pushing certain hospitals to crisis-level
overload [42, 46]. In response, a load-balancing rule was devised to divert non-critical ambulance
patients away from the closest hospital if that facility nears capacity, balancing travel time against
queue length through an optimization-based assignment approach [46]. A stochastic simulation based
on historical EMS data [42] was used to evaluate how load-balancing reduces peak occupancy and
hospital congestion—showcasing how simulation can improve patient outcomes in EMS networks.

The simulation workflow spans nested simulation system. We focus here on a representative
subproblem—the two-hospital ambulance diversion— to illustrate PEMC’s advantage. The discrete-
event simulation models two emergency departments, ED-1 and ED-2, each with physicians, patients,
and arrival streams whose rates λh,d vary by hour h and day d. Ingredients include nonhomogeneous
Poisson process with hourly arrival/service rates λh,d, e.g., Arrivals(t) ∼ NHPP

(
λ(t)

)
; Triage levels and

service times where each patient is assigned a triage level ℓ ∈ {1, 2, 3, 4, 5} via a (possibly crisis-adjusted)
multinomial distribution; Priority queueing and threshold diversion where physicians are modeled
as resources and patients forms priority queue ordered by triage. A threshold τ controls ambulance
diversion: if the queue Q in one hospital exceeds τ , new ambulance arrivals divert to the other hospital,
incurring additional travel time ∆ and so on. The evaluation needed is how weekly mortality counts
depends on the diversion threshold τ . By varying τ in the simulation, we obtain mortality counts
(or rates) as a function of policy choices, enabling downstream decisions. For PEMC predictor we
employ a random forest estimator—well-suited for context [35, 108]. We gather a training size 105,
and sample θ from a Θ calibrated from EMS data. The X are readily simulated components for the
nested MC—drawing on Weibull, Exponential, Gamma, and Poisson distributions with dim(X) = 12
-and is also parallelizable. The results are summarized Figure 5 and Table7. Further details are left in
Appendix C.

PREDICTION-ENHANCED MONTE CARLO 23

Figure 5. Ambulance diversion policies evaluation

Table 7. MSE and MAE for mortality evaluation at various τ .

Threshold MSE ↓ MAE ↓
MC PEMC MC PEMC

n = 0 10.974 4.142 2.765 1.587
n = 20 9.535 3.266 2.497 1.416
n = 40 9.174 3.122 2.428 1.376

6. Conclusion

In this paper, we introduced Prediction-Enhanced Monte Carlo (PEMC), a general framework
that uses machine learning–based predictors as flexible control variates. By integrating inexpensive,
highly parallelizable simulations as features, PEMC preserves the unbiasedness and error quantification
of classical Monte Carlo while delivering substantial variance and runtime reductions in settings where
traditional variance reduction techniques are infeasible. Looking ahead, several promising research
directions arise. First, meta-learning approaches could enable PEMC to automatically learn effective
control variates across related tasks, reducing manual tuning burdens [54]. Second, recent advances
in generative modeling—such as consistency models and diffusion-based methods [71, 123]—suggest
the possibility of generating advanced proposal distributions or learned variates, though integration
into finance requires new theoretical developments. Third, robust regression techniques from causal
inference and distribution-shift literature could enhance PEMC’s stability under model misspecification
or nonstationary data [88, 20, 49, 78, 69, 6, 112, 17, 126]. Incorporating ideas from doubly robust
estimators and orthogonal statistical learning may yield hybrid methods that further safeguard against
bias. Finally, PEMC’s versatility invites applications beyond standard derivatives pricing: accelerating
robust valuation of exotic options [101, 127], exploring equilibrium asset pricing with transaction costs
[96], and solving mean field game equilibria [100]. More ambitiously, PEMC could tackle complex
financial control problems—such as optimal control of debt management [25, 26], Stackelberg equilibria
in stochastic games [28, 27], and bank salvage modeling via impulse controls [38].

24 Li et al.

Acknowledgement: We would like to thank [acknowledge individuals, organizations, or institu-
tions] for their valuable input and support throughout this research.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems, 2016. arXiv preprint arXiv:1603.04467.

[2] Christoph Aistleitner, Jozsef Beck, Dmitriy Bilyk, Josef Dick, Michael Drmota, Henri Faure,
Peter Hellekalek, Gerhard Larcher, Gunther Leobacher, Dirk Nuyens, et al. Uniform distribution
and Quasi-Monte Carlo methods: discrepancy, integration and applications, volume 15. Walter
de Gruyter GmbH & Co KG, 2014.

[3] Leif Andersen. Simple and efficient simulation of the heston stochastic volatility model. Journal
of Computational Finance, 11(3):1–43, 2008.

[4] Leif Andersen, Darrell Duffie, and Yang Song. Xva challenges. Quantitative Finance, 19(1):1–38,
2017.

[5] Leif BG Andersen and Vladimir V Piterbarg. Interest rate modeling. Atlantic Financial Press,
1, 2010.

[6] Anastasios N Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I Jordan, and Tijana Zrnic.
Prediction-powered inference. Science, 382(6671):669–674, 2023.

[7] Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 1999.

[8] Sanjeev Arora, Rong Ge, Tengyu Ma, and Yi Zhang. Stronger generalization bounds for deep
nets via a compression approach. In International Conference on Machine Learning (ICML),
pages 254–263, 2018.

[9] Søren Asmussen and Peter W Glynn. Stochastic Simulation: Algorithms and Analysis. Springer,
New York, 2007.

[10] Heejung Bang and James M. Robins. Doubly robust estimation in missing data and causal
inference models. Biometrics, 61(4):962–973, 2005.

[11] Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds
for neural networks. In Advances in Neural Information Processing Systems (NeurIPS), pages
6240–6249, 2017.

[12] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[13] Peter L. Bartlett and Shahar Mendelson. Local rademacher complexities. Annals of Statistics,
33(4):1497–1537, 2005.

[14] Christian Bayer, Emanuel Derman, Iain Gourlay, and Michael Scott. Variance swaps and options
on variance. Risk Magazine, 12(9):75–78, 1999.

[15] Christian Bayer and Benoît Stemper. Deep pricing: Financial derivative pricing with deep
learning. Journal of Mathematics in Industry, 9(1):1–15, 2019.

[16] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization: methodology
and applications. Mathematical Programming, 114(1):1–33, 2008.

[17] Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning under covariate
shift. Journal of Machine Learning Research, 10:2137–2155, 2009.

[18] Jose Blanchet, Haoxuan Chen, Yiping Lu, and Lexing Ying. When can regression-adjusted
control variate help? rare events, sobolev embedding and minimax optimality. Advances in
Neural Information Processing Systems, 36, 2024.

[19] Jose H Blanchet, Peter W Glynn, and Yanan Pei. Unbiased multilevel monte carlo: Stochas-
tic optimization, steady-state simulation, quantiles, and other applications. arXiv preprint
arXiv:1904.09929, 2019.

PREDICTION-ENHANCED MONTE CARLO 25

[20] Lisa M. Bodnar, Amy R. Cartus, Emily H. Kennedy, Sharon I. Kirkpatrick, Sara M. Parisi,
Katherine P. Himes, Courtney B. Parker, William A. Grobman, Hyagriv N. Simhan, Robert M.
Silver, et al. Use of a doubly robust machine-learning–based approach to evaluate body mass
index as a modifier of the association between fruit and vegetable intake and preeclampsia.
American Journal of Epidemiology, 191(8):1396–1406, 2022.

[21] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

[22] Pierre Boyeau, Anastasios N Angelopoulos, Nir Yosef, Jitendra Malik, and Michael I Jordan.
Autoeval done right: Using synthetic data for model evaluation. arXiv preprint arXiv:2403.07008,
2024.

[23] Phelim Boyle, Mark Broadie, and Paul Glasserman. Monte carlo methods for security pricing.
Journal of economic dynamics and control, 21(8-9):1267–1321, 1997.

[24] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, Skye Wanderman-Milne, and Qiao Zhang. JAX: Composable transformations of
Python+NumPy programs. https://github.com/google/jax, 2018.

[25] Alberto Bressan and Yilun Jiang. Optimal open-loop strategies in a debt management problem.
Analysis and Applications, 16(01):133–157, 2018.

[26] Alberto Bressan and Yilun Jiang. The vanishing viscosity limit for a system of hj equations
related to a debt management problem. Discrete & Continuous Dynamical Systems-Series S,
11(5), 2018.

[27] Alberto Bressan and Yilun Jiang. On the generic structure and stability of stackelberg equilibria.
Journal of Optimization Theory and Applications, 183:840–880, 2019.

[28] Alberto Bressan and Yilun Jiang. Self-consistent feedback stackelberg equilibria for infinite
horizon stochastic games. Dynamic Games and Applications, 10(2):328–360, 2020.

[29] Damiano Brigo and Fabio Mercurio. Interest rate models-theory and practice: with smile, inflation
and credit. Springer Science & Business Media, 2006.

[30] Mark Broadie and Paul Glasserman. Estimating security price derivatives using simulation.
Management Science, 42(2):269–285, 1996.

[31] Mark Broadie and Özgür Kaya. Exact simulation of stochastic volatility and other affine jump
diffusion processes. Operations research, 54(2):217–231, 2006.

[32] Hans Buehler, Lukas Gonon, Josef Teichmann, and Ben Wood. Deep hedging. Quantitative
Finance, 19(8):1271–1291, 2019.

[33] Russel E Caflisch. Monte carlo and quasi-monte carlo methods. Acta numerica, 7:1–49, 1998.
[34] René A Carmona. Hjm: A unified approach to dynamic models for fixed income, credit and

equity markets. Paris-Princeton Lectures on Mathematical Finance 2004, pages 1–50, 2007.
[35] Victor Chang and Timothy Chew. Random forest triage for pre-hospital ambulance data analysis.

In Proceedings of the IEEE International Congress on Big Data (BigData Congress), pages 1–6,
2016.

[36] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whit-
ney Newey, and James Robins. Double/debiased machine learning for treatment and structural
parameters. The Econometrics Journal, 21(1):C1–C68, 2018.

[37] Thomas F Coleman, Yuying Li, and Arun Verma. Interpolation of implied volatility surfaces.
Computational Economics, 17:203–222, 2001.

[38] Francesco Giuseppe Cordoni, Luca Di Persio, and Yilun Jiang. A bank salvage model by impulse
stochastic controls. Risks, 8(2):60, 2020.

[39] John C Cox, Jonathan E Ingersoll Jr, and Stephen A Ross. A theory of the term structure of
interest rates. Econometrica, pages 385–407, 1985.

[40] Jaksa Cvitanic and Fernando Zapatero. Introduction to the Economics and Mathematics of
Financial Markets. MIT Press, Cambridge, MA, 2004.

https://github.com/google/jax

26 Li et al.

[41] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2(4):303–314, 1989.

[42] Enrique Lelo de Larrea, Henry Lam, Elioth Sanabria, Jay Sethuraman, Sevin Mohammadi,
Audrey Olivier, Andrew W. Smyth, Edward M. Dolan, Nicholas E. Johnson, Timothy R. Kepler,
Afsan Quayyum, and Kathleen S. Thomson. Simulating new york city hospital load balancing
during covid-19. In 2021 Winter Simulation Conference (WSC), pages 1–12, 2021.

[43] Emanuel Derman and Amir E. Fantazzini. Pricing and hedging variance swaps. Risk Magazine,
12(8):100–107, 1999.

[44] Emanuel Derman and Iraj Kani. Riding on a smile. Risk, 7(2):32–39, 1994.
[45] Kemal Dincer Dingec, Halis Sak, and Wolfgang Hörmann. Variance reduction for asian options

under a general model framework. Review of Finance, 19(2):907–949, 2015.
[46] Edward Dolan, Nicholas Johnson, Timothy Kepler, Henry Lam, Enrique Lelo de Larrea, Sevin

Mohammadi, Audrey Olivier, Afsan Quayyum, Elioth Sanabria, Jay Sethuraman, et al. Hospital
load balancing: A data-driven approach to optimize ambulance transports during the covid-19
pandemic in new york city. Available at SSRN 4094485, 2022.

[47] Bruno Dupire et al. Pricing with a smile. Risk, 7(1):18–20, 1994.
[48] Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds

for deep (and shallow) learning with a pac-bayesian approach. In Uncertainty in Artificial
Intelligence (UAI), 2017.

[49] Paul B. Ellickson, Wenyu Kar, and John C. Reeder III. Estimating marketing component effects:
Double machine learning from targeted digital promotions. Marketing Science, 42(4):704–728,
2023.

[50] Markus Emsermann and Burton Simon. Improving simulation efficiency with quasi control
variates. Stochastic Models, 18(3):425–448, 2002.

[51] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization
using the wasserstein metric: Performance guarantees and tractable reformulations. Mathematical
Programming, 171(1):115–166, 2018.

[52] Benjamin Eyre and David Madras. Auto-evaluation with few labels through post-hoc regression.
arXiv preprint arXiv:2411.12665, 2024.

[53] Myles Ferguson and Alexander Liang. Deep learning for pricing and hedging American-style
options. arXiv preprint arXiv:1812.11033, 2018.

[54] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning (ICML), pages 1126–1135,
2017.

[55] Dylan J Foster and Vasilis Syrgkanis. Orthogonal statistical learning. The Annals of Statistics,
51(3):879–908, 2023.

[56] Michele J. Funk, Daniel Westreich, Christopher Wiesen, Til Stürmer, Alan M. Brookhart, and
Marie Davidian. Doubly robust estimation of causal effects. American Journal of Epidemiology,
173(7):761–767, 2011.

[57] Jim Gatheral. The Volatility Surface: A Practitioner’s Guide. John Wiley & Sons, 2006.
[58] Michael B Giles. Multilevel monte carlo path simulation. Operations research, 56(3):607–617,

2008.
[59] Michael B. Giles. Multilevel monte carlo methods. Acta Numerica, 24:259–328, 2015.
[60] Mike Giles and Paul Glasserman. Smoking adjoints: Fast monte carlo greeks. Risk, 19(1):88–92,

2006.
[61] Paul Glasserman. Monte Carlo methods in financial engineering. Springer Science & Business

Media, 2013.
[62] Paul Glasserman. Monte Carlo Methods in Financial Engineering, volume 53 of Stochastic

Modelling and Applied Probability. Springer, 2013.

PREDICTION-ENHANCED MONTE CARLO 27

[63] Andrew Green, Chris Kenyon, and Chris Dennis. Xva: Credit, funding and capital valuation
adjustments. John Wiley & Sons, 2015.

[64] Julien Guyon and Pierre Henry-Labordère. Nonlinear Option Pricing. Chapman and Hall/CRC,
2014.

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 770–778. IEEE, 2016.

[66] David Heath, Robert Jarrow, and Andrew Morton. Bond pricing and the term structure of
interest rates: A new methodology for contingent claims valuation. Econometrica, pages 77–105,
1992.

[67] Shane G. Henderson and Peter W. Glynn. Optimization of control variate estimators. Operations
Research, 50(2):362–371, 2002.

[68] Shane G. Henderson and Barry Simon. Adaptive control variates for monte carlo simulation.
Naval Research Logistics, 51(4):348–364, 2004.

[69] Miguel A. Hernán and James M. Robins. Causal Inference: What If. Chapman & Hall/CRC,
Boca Raton, 2020.

[70] Steven L Heston. A closed-form solution for options with stochastic volatility with applications
to bond and currency options. The review of financial studies, 6(2):327–343, 1993.

[71] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems (NeurIPS), volume 33, pages 6840–6851, 2020.

[72] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks,
4(2):251–257, 1991.

[73] Béla Horváth, Aitor Muguruza, and Mehdi Tomas. Deep learning volatility: a deep neural
network perspective on pricing and calibration in (rough) volatility models. Quantitative Finance,
21(1):11–27, 2021.

[74] John C Hull. Options, Futures, and Other Derivatives. Pearson, Boston, 2018.
[75] James M Hutchinson, Andrew W Lo, and Tomaso Poggio. A nonparametric approach to pricing

and hedging derivative securities via learning networks. The Journal of Finance, 49(3):851–889,
1994.

[76] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, pages
448–456. PMLR, 2015.

[77] Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without
discrimination. Knowledge and Information Systems, 33(1):1–33, 2012.

[78] Joseph D. Y. Kang and Joseph L. Schafer. Demystifying double robustness: A comparison of
alternative strategies for estimating a population mean from incomplete data. Statistical Science,
22(4):523–539, 2007.

[79] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus, volume 113
of Graduate Texts in Mathematics. Springer Science & Business Media, 2nd edition, 1991.

[80] Samuel H. Kim and Shane G. Henderson. Adaptive control variates for pricing multi-asset
options. Journal of Computational Finance, 10(2):57–82, 2007.

[81] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[82] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems, 25:1097–1105,
2012.

[83] Henry Lam and Haofeng Zhang. Doubly robust stein-kernelized monte carlo estimator: Simulta-
neous bias-variance reduction and supercanonical convergence. Journal of Machine Learning
Research, 24(85):1–58, 2023.

28 Li et al.

[84] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[85] Pierre L’Ecuyer and Victor Luu. Neural network-based control variates for option pricing. In
2019 Winter Simulation Conference (WSC), pages 3318–3329. IEEE, 2019.

[86] Guillaume Leluc, Maxime Rossi, and David Bolin. Learning control variates for monte carlo
methods. arXiv preprint arXiv:2112.01003, 2021.

[87] Moshe Leshno, Vedat Y. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural
Networks, 6(6):861–867, 1993.

[88] Fengpei Li and Henry Lam. Robust covariate shift regression. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[89] Z. Li and Y. Zhang. Stein control variates for monte carlo. Journal of Computational Physics,
476:111630, 2023.

[90] Han Lin, Haoxian Chen, Krzysztof M Choromanski, Tianyi Zhang, and Clement Laroche.
Demystifying orthogonal monte carlo and beyond. Advances in Neural Information Processing
Systems, 33:8030–8041, 2020.

[91] Sifan Liu. Langevin quasi-monte carlo. Advances in Neural Information Processing Systems,
36:75338–75353, 2023.

[92] Roger Lord, Remmert Koekkoek, and Dick Van Dijk. A comparison of biased simulation schemes
for stochastic volatility models. Quantitative Finance, 10(2):177–194, 2010.

[93] Zhiyuan Lu, Huan Pu, Fei Wang, Zhiqiang Hu, and Li Wang. The expressive power of neural
networks: A view from the approximation theory. In Advances in Neural Information Processing
Systems (NeurIPS), pages 440–448, 2017.

[94] Stéphane Maire. Monte carlo integration by l2-function approximation. Journal of Computational
and Applied Mathematics, 151:187–199, 2003.

[95] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
MIT Press, 2nd edition, 2018.

[96] Johannes Muhle-Karbe, Marcel Nutz, and Xiaowei Tan. Asset pricing with heterogeneous beliefs
and illiquidity. Mathematical Finance, 30(4):1392–1421, 2020.

[97] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 807–814,
2010.

[98] Barry L Nelson. Control variate remedies. Operations Research, 38(6):974–992, 1990.
[99] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. A pac-

bayesian approach to spectrally-normalized margin bounds for neural networks. In International
Conference on Learning Representations (ICLR), 2018.

[100] Marcel Nutz, Jaime San Martin, and Xiaowei Tan. Convergence to the mean field game limit: a
case study. The Annals of Applied Probability, 30(1):259–286, 2020.

[101] Marcel Nutz, Florian Stebegg, and Xiaowei Tan. Multiperiod martingale transport. Stochastic
Processes and their Applications, 130(3):1568–1615, 2020.

[102] Chris J. Oates, Mark Girolami, and Nicolas Chopin. Control functionals for monte carlo
integration. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):695–
718, 2017.

[103] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

[104] Raghu Pasupathy, Bruce W Schmeiser, Michael R Taaffe, and Jin Wang. Control-variate
estimation using estimated control means. Iie Transactions, 44(5):381–385, 2012.

[105] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative

PREDICTION-ENHANCED MONTE CARLO 29

style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, volume 32, pages 8024–8035. Curran Associates, Inc., 2019.

[106] Benjamin Peherstorfer, Karen Willcox, and Max Gunzburger. Survey of multifidelity methods in
uncertainty propagation, inference, and optimization. Siam Review, 60(3):550–591, 2018.

[107] Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta Numerica,
8:143–195, 1999.

[108] Romain Pirracchio, Matthieu Resche-Rigon, and Sylvie Chevret. Mortality prediction in intensive
care units with the random forest model. BMC Medical Research Methodology, 15(1):1–10, 2015.

[109] François Portier and Johan Segers. Monte carlo integration with a growing number of control
variates. Journal of Applied Probability, 55(4):1078–1092, 2018.

[110] Thomas P Prescott and Ruth E Baker. Multifidelity approximate bayesian computation.
SIAM/ASA Journal on Uncertainty Quantification, 8(1):114–138, 2020.

[111] Philip Protter. Variance and Volatility Swaps. Wiley Finance, Hoboken, NJ, 2010.
[112] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence.

Dataset shift in machine learning. In Dataset Shift in Machine Learning. The MIT Press,
Cambridge, MA, 2009.

[113] Alok Rajkomar, Moritz Hardt, and Michael D. Howell. Ensuring fairness in machine learning to
advance health equity. Annals of Internal Medicine, 169(12):866–872, 2018.

[114] Yong Ren, Dilip Madan, and M Qian Qian. Calibrating and pricing with embedded local
volatility models. RISK-LONDON-RISK MAGAZINE LIMITED-, 20(9):138, 2007.

[115] Chang-han Rhee and Peter W Glynn. Unbiased estimation with square root convergence for sde
models. Operations Research, 63(5):1026–1043, 2015.

[116] James M. Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients
when some regressors are not always observed. Journal of the American Statistical Association,
89(427):846–866, 1994.

[117] Johannes Ruf and Weiguan Wang. Neural networks for option pricing and hedging: A literature
review. The Journal of Computational Finance, 25(2):1–46, 2021.

[118] Tomasz Rychlik. Unbiased nonparametric estimation of the derivative of the mean. Statistics &
probability letters, 10(4):329–333, 1990.

[119] Marc Sabate Vidales, David Šiška, and Lukasz Szpruch. Unbiased deep solvers for linear
parametric pdes. Applied Mathematical Finance, 28(4):299–329, 2021.

[120] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Neural network approximation: Three perspec-
tives. Foundations of Computational Mathematics, 21(1):3–59, 2021.

[121] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[122] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving
partial differential equations. Journal of Computational Physics, 375:1339–1364, 2018.

[123] Yang Song, Jascha Sohl-Dickstein, Durk P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations (ICLR), 2021.

[124] Leah South, Simon Barthelmé, and Iain Murray. Regularised control variates for variance
reduction. arXiv preprint arXiv:2202.12023, 2022.

[125] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[126] Masashi Sugiyama and Motoaki Kawanabe. Covariate shift adaptation by importance weighted
cross-validation. In Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and
Neil D. Lawrence, editors, Dataset Shift in Machine Learning, pages 123–130. The MIT Press,
Cambridge, MA, 2009.

30 Li et al.

[127] Xiaowei Tan. Optimal Transport and Equilibrium Problems in Mathematical Finance. Columbia
University, 2019.

[128] Grigore Tataru and Travis Fisher. Stochastic local volatility. Quantitative Development Group,
Bloomberg Version, 1, 2010.

[129] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998.
[130] Oldrich Vasicek. An equilibrium characterization of the term structure. Journal of Financial

Economics, 5(2):177–188, 1977.
[131] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, pages 5998–6008. Curran Associates, Inc., 2017.

[132] Ruosi Wan, Mingjun Zhong, Haoyi Xiong, and Zhanxing Zhu. Neural control variates for monte
carlo variance reduction. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part
II, pages 533–547. Springer, 2020.

[133] Julian Wrede, Helge Wrede, and Wilhelm Behringer. Emergency department mean physician
time per patient and workload predictors ED-MPTPP. J Clin Med, 9(11), nov 2020.

[134] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks,
94:103–114, 2017.

[135] Honglei Zhao, Rupak Chatterjee, Thomas Lonon, and Ionuţ Florescu. Pricing bermudan variance
swaptions using multinomial trees. The Journal of Derivatives, 26(3):22–34, 2019.

[136] Honglei Zhao, Zhe Zhao, Rupak Chatterjee, Thomas Lonon, and Ionuţ Florescu. Pricing variance,
gamma and corridor swaps using multinomial trees. The Journal of Derivatives, 25(2):7–21,
2017.

[137] Wendong Zheng and Yue Kuen Kwok. Closed form pricing formulas for discretely sampled
generalized variance swaps. Mathematical Finance, 24(4):855–881, 2014.

[138] Tijana Zrnic and Emmanuel J Candès. Cross-prediction-powered inference. Proceedings of the
National Academy of Sciences, 121(15):e2322083121, 2024.

PREDICTION-ENHANCED MONTE CARLO 31

Appendix A. Proofs

A.1. Proof of Lemma 3.

Proof. Proof By relaxing the constraints to n,N ∈ R+, the optimization problem

min
n>0,N>0

1

n
σ2
f−g +

1

N
σ2
g .

s.t. ncf−g +Ncg ≤ B,

is jointly convex in n,N ∈ R+. The objective value also approaches infinity as N → 0 or n → 0.
Consequently, the strict convexity ensures the existence of a global minimizer in the interior and
directly solving the Lagrangian gives us the result. □

A.2. Proof of Lemma 4.

Proof. Proof Based on the results of Lemma 3, we can deduce that this ratio again does not depend
on the budget B, so we omit its dependence in the statement. Moreover, we can conveniently choose
a budget of the form B = n0cf−g + n0

σg

σf−g
·
√

cf−g

cg
cg which gives an allocation of n = n0 and

N = n0
σg

σf−g
·
√

cf−g

cg
for PEMC in accordance with Lemma 3, while comparing with B/cf samples for

standard MC. The rest follows from Lemma 2 and the assumption cf = cf−g. □

A.3. Proof of Lemma 5.

Proof. Proof When g = E[f(Y) |X] is the true regressor, i.e.,

g = argmin
h measurable

E[(f(Y)− h(X))2],

and f is square-integrable, it follows that E[(f − g)h] = 0 for all square-integrable h. Plugging in
h = g, we obtain Cov(f − g, g) = 0. Consequently we have ρ := corr(f, g) =

σg

σf
and σ2

f = σ2
f−g + σ2

g ,
which further implies σg = ρ2σ2

f and σ2
f−g = (1− ρ2)σ2

f . The rest follows from cf−g = cf . □

A.4. Proof of Lemma 6. In this part, we go through the pipeline for a result in the form of Lemma
6 in Section 4.3.1. We begin by formally introducing the key concepts associated with the learning
framework under consideration.

Definition 4. Let g0 denote the true regression function, defined by

g0(θ,X(θ)) :=Erisk neutral measure(θ)

[
fθpayoff(Y (θ))

∣∣∣∣ (θ,X(θ))

]
= argmin

g measurable
Eθ∼Θ,(X(θ),Y (θ))∼risk neutral measure(θ)

(
fθpayoff(Y (θ))− g(θ,X(θ))

)2

.

Note that equality exploits the well-known property of the squared loss minimizer: it is the conditional
expectation of the target variable given the input features. The notable part is that, this formulation
inherently incorporates the sampling over θ ∼ Θ. This is because, in PEMC we generate training
data by first drawing θ from Θ and then sampling X(θ),Y (θ) from the corresponding risk-neutral
measure indexed by θ. However, since the result holds pointwise for each fixed θ ∈ Θ, it also holds in
the aggregate setting where θ is (uniformly) random. For simplicity, we do not delve into technical
measurability considerations here.

Next, we introduce the hypothesis class and define the best-in-class predictor. The hypothesis class
G plays a pivotal role in the learning framework, encapsulating the set of candidate functions from
which the predictor g is selected.

32 Li et al.

Definition 5. Let G be the hypothesis class induced by the NN model family. Define g∗ as the
best-in-class function satisfying

g∗(θ,X(θ)) := argmin
g∈G

Eθ∼Θ,(X(θ),Y (θ))∼risk neutral measure(θ)

(
fθpayoff(Y (θ))− g(θ,X(θ))

)2

=argmin
g∈G

Eθ∼Θ,X(θ)∼risk neutral measure(θ)

(
(g0 − g)(θ,X(θ))

)2

.

where the second line follows again from the definition of g0. Considering a model g trained with
Ntrain samples and is held fixed during the evaluation of the expectation, as is standard when discussing
generalization error, the approximation error is defined as

ϵGa := Eθ∼Θ,X(θ)∼risk neutral measure(θ)

(
(g0 − g∗)(θ,X(θ))

)2

,

and the statistical error from g obtained from training on Ntrain samples:

ϵNtrain
e := Eθ∼Θ,X(θ)∼risk neutral measure(θ)

(
(g∗ − g)(θ,X(θ))

)2

.

Finally, define the total error as

ϵtotal := Eθ∼Θ,X(θ)∼risk neutral measure(θ)

(
(g0 − g)(θ,X(θ))

)2

.

It follows that

ϵtotal ≤ 2ϵGa + 2ϵNtrain
e . (21)

The interaction between ϵGa and ϵNtrain
e essentially captures the bias-variance tradeoff. By choosing

more expressive model classes (e.g., richer neural network architectures) and increasing the training
set size, we can jointly reduce ϵGa and ϵNtrain

e . Thus, under reasonable conditions, ϵtotal can be made
arbitrarily small if both ϵGa and ϵNtrain

e . In the following sections, we analyze ϵGa and ϵNtrain
e respectively.

A.4.1. Approximation Error ϵGa . Note that this best-in-class function g∗ depends on the distribution
of θ ∼ Θ, meaning the notion of optimality is distribution-dependent on θ. This is also why we
choose a distribution θ ∼ Θ that sufficiently covers the space. In this paper, G is induced by our
choice of neural network architecture and training procedure. The complexity of G significantly
impacts both approximation and statistical errors. Neural networks are renowned for their flexibility
and expressiveness, serving as universal approximators. According to the Universal Approximation
Theorem [41, 72], neural networks with a single hidden layer containing a sufficient number of neurons
can approximate any continuous function on compact subsets of Rn to arbitrary accuracy. Modern
extensions of this theorem provide more nuanced insights into how network depth and architecture
influence approximation capabilities [134, 93, 120, 41, 72]. Typical universal universal approximation
theorems deals with compact input space in Rn and point-wise convergence, in our context, we do not
restrict X to live in a compact space and we only need L 2 convergence, so the theorem from [107] or
[87] is sufficient, which gives us

Lemma 7. Suppose g0 : Θ×Rdim(X) → R is in L 2(P) where P is the probability measure that governs
the joint distribution of θ ∼ Θ, (X(θ),Y (θ)) ∼ risk neutral measure(θ). Then, for any ϵ > 0, we can
find a class of NN G such that

ϵGa ≤ ϵ.

Proof. Proof See [107] or [87]. □

PREDICTION-ENHANCED MONTE CARLO 33

A.4.2. Statistical Error ϵNtrain
e . To quantify the capacity of G, one could employ common complexity

measures such as the Vapnik-Chervonenkis (VC) dimension [129] or Rademacher complexity [12]. These
measures provide bounds on the generalization error by capturing the richness of the hypothesis class.
Modern studies have further refined our understanding of neural network complexity. For instance,
norm-based capacity controls [11], PAC-Bayesian bounds [48], and local Rademacher complexities [13]
offer more nuanced insights. In particular, most neural network architectures are known to have finite
complexity measures, such as finite VC dimension or other capacity metrics, when considered as a
hypothesis class with a fixed number of parameters [7].

Consequently, when empirical risk minimization (ERM) is performed over these networks with
controlled complexity, standard statistical learning theory guarantees apply, yielding generalization
bounds that typically decrease on the order of O(1/

√
Ntrain) where Ntrain is the sample size [11, 99, 8]

and the constant in the rate depends on the complexity measure. Our PEMC prediction model can
be considered as a ERM estimator. Thus, these results ensure that, given sufficiently large training
sets and appropriate capacity constraints (e.g., weight regularization or architectural choices), neural
networks can achieve low statistical error ϵNtrain

e .
Finally, there is an optimization error arising from the discrepancy between the empirical risk

minimizer within G and the final trained model g. This error accounts for situations where the
optimization algorithm does not perfectly identify the empirical risk minimizer. However, we do not
consider this optimization error, effectively assuming the presence of an ideal “oracle” for optimization.
Consequently, theoretical analyses typically treat our g as readily available empirical minimizer.

Lemma 8. Suppose g is the empirical risk minimizer of Algorithm 1 and the neural network class G
has a finite VC-dimension or Rademacher complexity. Then, for any ϵ > 0, there exists Ntrain such
that

ϵNtrain
e ≤ ϵ.

A.4.3. Proof of Lemma 6. Lemma 7 and Lemma 8 allows us to control ϵtotal using (21), which allows
us to prove Lemma 6 with the help of the following technical definition and lemma.

Definition 6. Define ϵtotal(θ) := EX(θ)∼risk neutral measure(θ)
(
g(X(θ))− g0(X(θ))

)2.
As a result, we have Eθ∼Θϵtotal(θ) = ϵtotal, which allows us to establish the following lemma.

Lemma 9. Let G be a second moment bound for g, i.e.,

EX(θ)∼risk neutral measure(θ)g
2(X(θ)) ≤ G.

uniformly for all θ ∈ Θ. Then, for each θ ∈ Θ,

|σ2
f − σ2

g − σ2
f−g| ≤ 2

√
ϵtotal(θ)

√
G.

Proof. Proof Fix any θ ∈ Θ. From the variance decomposition, we have

Var(f) = Var(g) + Var(f − g) + 2Cov(f − g, g),

which implies

|σ2
f − σ2

g − σ2
f−g| ≤ 2|Cov(f − g, g)|.

Conditioning on X and utilizing the properties of g0, we find that Cov(f − g, g) = Cov(g0 − g, g).
Applying the Cauchy–Schwarz inequality yields the desired inequality. □

We can now prove Lemma 6.

Proof. Proof of Lemma 6 Besides the assumptions in Lemma 7, Lemma 8 and Lemma 9, we further
assume

g ≤ EX(θ)∼risk neutral measure(θ)g
2(X(θ)),EY (θ)∼risk neutral measure(θ)f

2(Y (θ)) ≤ G, (22)

34 Li et al.

for some 0 < g < G <∞, uniformly for all θ ∈ Θ. Then, based on Lemma 7, 8 and Markov inequality,
we can find G and Ntrain such that, with probability at least 1 − δ, the randomly sampled θ ∼ Θ
satisfies

ϵtotal(θ) ≤ ϵ,

which, together with Lemma 9 gives

|σ2
f − σ2

g − σ2
f−g| ≤ O(ϵ),

with the constant in O not dependent on θ. Then, for at least 1− δ fraction of θ ∈ Θ, as one shrinks
ϵ → 0, ϵtotal(θ) ≤ ϵ and |σ2

f − σ2
g − σ2

f−g| ≤ O(ϵ) implies σ2
g → σ2

g0 and σ2
f−g0

→ σ2
f−g uniformly

for all such θ. Since σ2
f = σ2

g0 + σ2
f−g0

, this further implies σg

σf
→ σg0

σf
and σf−g

σf
→ σf−g0

σf
, given the

boundedness of (22). Thus, Var(PEMC)
Var(MC) in (12) → r(ρ, c) in (13), or equivalently, with probability at

least 1− δ, the randomly sampled θ ∼ Θ satisfies

Var(PEMC)

Var(MC)
= r(ρ, c) +O(ϵ),

where the constant in O does not depend on θ. This concludes the proof. □

Appendix B. Numerical Results on Asian Option Pricing

We revisit the Asian option example and conduct experiments using the arithmetic Asian call
option under the Geometric Brownian Motion (GBM) model. We choose the GBM model instead of
the Heston model (6) to facilitate a direct comparison between PEMC, standard Monte Carlo (MC),
and the traditional Control Variate (CV) method on the extent of variance reduction. This is because
the geometric Asian option, which serves as a well-established control variate, is analytically tractable
within the GBM framework but lacks a closed-form solution under the Heston model [45].

This experiment aims to demonstrate the typical level of variance reduction that PEMC achieves.
Our focus is strictly limited to variance reduction, because the GBM model actually allows for
highly efficient and parallelized generation of both asset paths and corresponding payoffs, making
the simulation of Y computationally straightforward. In other words, one could not fully leverage
PEMC’s strengths in GBM model and this toy experiment only serves to provide insights into PEMC’s
effectiveness in a controlled setting where a known CV exists. Practical applications and actual
use-cases of PEMC will be provided in Section 5.

B.1. Experimental Setup. We implement the PEMC procedure detailed in Section 3.5, utilizing a
neural network (NN) as the predictive model. The asset price follows the Geometric Brownian Motion
(GBM) model:

dSt =rStdt+ σStdW
S
t . (23)

The payoff calculation PA({St}t) = (1
nD

∑nD

i=1 Sti − K, 0)+ with nD = 252, where simulations are
carried out using daily time increments (i.e., ∆t = 1). The parameter space θ := (r, S0, σ,K) ∈ Θ is:
r ∈ [0.01, 0.03], S0 ∈ [80, 120], σ ∈ [0.05, 0.25], and K ∈ [90, 110]. For our feature X, we experiment
with the whole sum of Brownian increments WS

T :=
∑252

j=1 ∆WS
j with dim(X) = 1. We also tried a

more granular representation where we partition 252 Brownian increments evenly into 14 parts, each
summing 18 consecutive increments: [X]i =

∑18i
j=18(i−1)+1 ∆WS

j for i ∈ [14], yielding dim(X) = 14.
The neural network is trained on a dataset comprising Ntrain = 1.28 × 106 samples, generated by
uniformly sampling θ ∼ Θ.

The neural network architecture consists of three components: a θ network branch, a X network
branch, and a combined network. This architecture incorporates several modern deep learning practices,
including Batch Normalization [76], Rectified Linear Unit (ReLU) activations [97], and skip connections

PREDICTION-ENHANCED MONTE CARLO 35

[65] to enhance training stability and model performance. The θ network branch processes the 4-
dimensional input θ using two fully connected layers with Batch Normalization and ReLU activation
functions, outputting a 10-dimensional feature vector for subsequent processing. The X network
branch uses two fully connected layers with width max(32, 2 dim(X)) neurons. Finally, the combined
network integrates outputs from both branches through concatenation and employs skip connections
featured in ResNet architectures to preserve information flow. The concatenated features pass through
two additional fully connected layers with Batch Normalization and ReLU activation to produce the
final prediction for PEMC. The network is implemented using PyTorch [105] and trained using the
Adam optimizer [81] with a learning rate of 1× 10−3, incorporating dropout layers [125] with a rate of
0.5 after each hidden layer to prevent overfitting.

B.2. Evaluation. For comparison, we implement PEMC, MC and CV method with geometric Asian
option

PG({St}t) = ((

nD∏
i=1

Sti)
1

nD −K, 0)+,

for the evaluation at θ = (r, S0, σ,K) = (0.02, 100, 0.2, 100). The CV estimator is given by

CV =
1

n

n∑
i=1

(
PA({S(i)

t }t)− PG({S(i)
t }t)

)
+ P exact

G (θ),

where P exact
G (θ) is the closed-form price of geometric Asian option (with correction regarding nD) [61].

We first evaluate the mean of 2× 109 MC samples as the ground truth value A0. Then, we evaluate n
sample average of the MC, PEMC (N = 10n) and the geometric CV estimator for n = 1000, 4000, 9000
respectively, to record 3 different estimator for A0. Then we repeat the experiments 300 times to get
300 estimators for each n ∈ {1000, 4000, 9000} and each method in {MC, PEMC, Geometric CV}, to
compare against A0. The performance of the estimators is summarized in Table 8 and Figure 6.

Table 8. Root Mean Squared Error from 300 Experiments

Method n = 1000 n = 4000 n = 9000
Monte Carlo (MC) 0.2376 0.1173 0.0854
PEMC (dimX = 1) 0.1509 0.0809 0.0481
PEMC (dimX = 14) 0.0781 0.0397 0.0261
Geometric CV 0.0099 0.0051 0.0036

Given that all estimators are unbiased, our analysis focuses exclusively on variance-related metrics.
The experimental results demonstrate the superior performance of the PEMC framework compared to
the standard Monte Carlo (MC) estimator. In particular, in all sample sizes, the PEMC framework
delivers visible variance reduction over MC: PEMC’s basic variant with dimX = 1 achieves a 30-40%
reduction in root mean squared error (RMSE) relative to MC, while the more sophisticated variant
with dimX = 14 attains an impressive 65-70% reduction in RMSE over MC. However, the Geometric
CV emerges as the most efficient estimator by far, with RMSE an order of magnitude smaller than
MC.

To better understand this hierarchy in estimator performance, it is helpful to recognize PEMC not
as a specific estimator, but rather as a framework that latches on and enhance an existing baseline. In
our current example, we chose standard MC as the baseline, and design our PEMC directly upon MC
to improve it. This also illustrates a common state of practice: in most complex scenarios, sophisticated
baselines like CV are not available, and practitioners must rely on some variants of naive MC methods.
Then, PEMC can be applied to these baselines to achieve variance reduction. However, PEMC is a
flexible framework designed to enhance general simulation baselines, including sophisticated ones, not

36 Li et al.

Figure 6. Performance of Estimators for Asian Options. The Comparison of estima-
tor across Monte Carlo (MC), PEMC, and Geometric Control Variate (CV) is based
on 300 experiments. Top: Mean squared errors (MSE) plot as a function of n for (left)
PEMC with dimX = 1 and (right) PEMC with dimX = 14, both compared against
MC and Geometric CV. Bottom: Corresponding boxplots of the 300 estimates.

just standard Monte Carlo. In practice, efficient MC techniques such as Quasi-Monte Carlo (QMC)
methods [33, 2] and their variants—including Langevin Monte Carlo (LMC) [91], Orthogonal Monte
Carlo (OMC), and Near-Orthogonal Monte Carlo (NOMC) [90]—can be integrated with PEMC for
further variance reduction.

B.3. Using PEMC as a “Boost" to Known CV. Lastly, we demonstrate how PEMC can be used
to improve existing CV. This supports the creative use of PEMC for further efficiency enhancement
even for problems that already possess some variance reduction approaches. In particular, when a

PREDICTION-ENHANCED MONTE CARLO 37

CV with known mean is available, such as in this current example, PEMC can be built upon it to
potentially achieve even greater variance reduction. To see how, in Algorithm 1, we change the label
from PA({St}t) (MC baseline) to PA({St}t)− PG({St}t) + P exact

G (θ) (Geometric CV baseline), and
let the model g learn

g(θ,X(θ)) ≈Erisk neutral measure(θ)

[
PA({St}t)− PG({St}t) + P exact

G (θ)

∣∣∣∣(θ,X(θ))

]
=Erisk neutral measure(θ)

[
PA({St}t)− PG({St}t)

∣∣∣∣(θ,X(θ))

]
+ P exact

G (θ). (24)

This formulation suggests we can train g on the difference of PA({St}t)−PG({St}t) as labels and
then add back the closed-form P exact

G (θ) to g. We implemented this approach, which we call “Boost
PEMC," using the basic PEMC variant where X = WS

T :=
∑252

j=1 ∆WS
j with dimX = 1. As shown

in Table 9 and Figure 7, this Boost PEMC indeed achieves variance reduction over the sophisticated
Geometric CV estimator, delivering a 35-40% reduction in RMSE, remarkably consistent with the
relative performance gain we observed when applying PEMC to the MC baseline in Figure 6.

Table 9. Root Mean Squared Error from 300 Experiments

Method n = 1000 n = 4000 n = 9000
Boost PEMC (dimX = 1) 0.0065 0.0031 0.0021
Geometric CV 0.0099 0.0051 0.0036

Figure 7. Performance of CV-based Estimators for Asian Options. Comparison of
estimator performance for Boost PEMC and Geometric Control Variate (CV) based
on 300 experiments. Left: Mean squared errors (MSE) plot as a function of n. Right:
Corresponding boxplots of 300 estimates.

This experiment with Asian options under the GBM model serves as a controlled study to
demonstrate PEMC’s effectiveness as a variance reduction framework. In the following section, we go

38 Li et al.

beyond this over-simplified setting and apply PEMC to practical applications in complex derivative
pricing.

Appendix C. Additional Details on the Ambulance Diversion Example

We provide more details on the ambulance diversion policy evaluation example in Section ??.
Some key ingredients are as follows: 1) Patient Arrivals: We simulate patient inflow to each hospital
(A or B) according to a nonhomogeneous Poisson process with hourly rates λh,d. Specifically:

Arrivals(t) ∼ NHPP
(
λ(t)

)
,

where λ(t) is determined by a piecewise schedule over each hour h of day d. Many of these arrivals (e.g.,
25%) come by ambulance, with the remainder as walk-ins. 2) Triage Levels and Service Times: Each
arriving patient is assigned a triage level ℓ ∈ {1, 2, 3, 4, 5} via a (possibly crisis-adjusted) multinomial
distribution:

Pr[L = ℓ] = pℓ or p
(crisis)
ℓ .

Service times are exponential with rate µℓ, depending on the triage level ℓ. More critical levels (e.g.,
ℓ = 1) have faster service rates µ1. 3) Priority Queueing and Threshold Diversion Doctors are modeled
as resources, each available over a shift [start, end]. Patients join a priority queue ordered by triage,
preempting lower-priority service. A threshold τ controls ambulance diversion: if the queue Q in one
hospital exceeds τ , new ambulance arrivals divert to the other hospital, incurring additional travel
time ∆. Mathematically:

divert(τ) =

{
1, if Q > τ,

0, otherwise.

4) Mortality Function Each patient i has a time-varying risk of death. The code uses two
complementary representations: 1. Direct Mortality Probability:

mortality_func(x, d, a, t, B, ν) = At +
Kt −At[

1 + (3t) exp
(
−(B + 5− t)x+ (−2 + 2.5a)t

)]1/(ν+0.25t)
,

where x is the wait time, d indicates diversion, a is whether the patient obtained a doctor, t is
triage level, and (B, ν) control shape and shift. Constants {At,Kt} reflect baseline and max risk by
triage. Also, Inverse Mortality: inverse_mortality_func(u, a, t, B, ν) solves for the time at which a
random uniform u indicates death. Thus each patient obtains a death_time (a form of Weibull-like
distribution). A patient *dies* if its *wait time* W exceeds this random death_time. 5. We simulate
day-by-day, in 4-hour shifts, updating doctors’ availability and arrivals. Diversion is triggered once a
queue surpasses τ . We aim to minimize total mortality over d days:

min E
[∑
patients i

1
{
waiti > death_timei

}]
,

subject to feasible travel times and doctor schedules.
To validate the proposed load-balancing rule, we develop a discrete-event simulation reflecting

real-time dynamics of New York City’s EMS system. Patient arrivals are modeled by a nonhomogeneous
Poisson process, λ(t), calibrated to historical data from the pandemic’s peak. Upon arrival, each
patient is assigned a triage level ℓ ∈ {1, . . . , 5} via a multinomial distribution that shifts according
to COVID surges. Service times in the emergency department follow exponential distributions with
rate µℓ. At each event, if the queue length at a chosen hospital exceeds a threshold, the ambulance
is diverted to an alternative facility, trading off increased travel against avoiding overcrowding. By
iterating this simulation over a range of thresholds and arrival scenarios, we optimize a load-balancing
policy that significantly reduces hospital overloading and shortens ED wait times. Specifically, our
discrete-event simulation (spanning a one-week horizon) envisions two hospitals (A and B) under

PREDICTION-ENHANCED MONTE CARLO 39

nonhomogeneous Poisson arrivals—with "normal" or "crisis" modes dictating time-varying rates—and
assigns each patient a triage level from 1, 2, 3, 4, 5. Service rates (µA

ℓ , µ
B
ℓ) differ by hospital and triage

ℓ, while death times follow a Weibull distribution parameterized by (α, β). Our decision variable is a
threshold τ , triggering ambulance diversions whenever either hospital’s queue exceeds τ . We optimize
τ to minimize total mortality, measured by the fraction of patients whose wait time surpasses their
Weibull survival limit. Experiments show that, particularly in crisis mode, adaptive thresholding
significantly reduces overloading and mortality compared to the naive "always-nearest-hospital" policy.

Let λ = (λh,d) denote the matrix of arrival rates across hours and days. Patients arrive with
triage levels L ∈ {1, . . . , 5} (where 1 is most critical), drawn from multinomial probabilities {pℓ, pcrisis

ℓ }.
Within each ED, service times for triage ℓ follow exponential distributions exp(µℓ), and mortality
follows a logistic model: P(death | L = ℓ,W = w) = 1

1+exp(−(β0,ℓ+β1,ℓw)) . Notably, 25% of arrivals
come by ambulance. If an ED’s queue length Q exceeds a threshold τ , any new ambulances divert to
the other ED, incurring extra travel time. In a data-adaptive version, τ is updated each shift using
predicted arrival rates. All model inputs—arrival rates, triage probabilities, and service rates—come
from empirical data [133], while the logistic mortality parameters β0,ℓ, β1,ℓ are tuned (with minor
per-patient perturbations) to capture heterogeneous risk profiles.

In this example, we construct the feature of

(τ , hosp2_doctor_shift_counts, crisis_factor, hopsital1_max_patience,

hopsital2_max_patience, total_number_of_patients, total_service_time,

max_patience_time, total_death_time,

total_number_of_patients_without_life_threatening_symptoms,

triage1_count, triage2_count, triage3_count, triage4_count, triage5_count).

The blue features are θ while the purple ones are X. The simulation starts by first sampling
the number of patients, which follows a Poisson distribution with parameter of λT , denoted by
Np. hopsital1_max_patience and hopsital2_max_patience can be simulated with max of weilbull
distribution, and max_patience can be computed by taking the max of these quantities (which has
closed-form density function, i.e., maximum of Weibull’s). total_service_time can be simulated by
first sampling service time for Np times with exp(λservice) and summing up (which has closed-form
density function, i.e., sum of exponential is Gamma). total_death_time can be simulated by taking
first sampling individual using inversion sampling from F−1(u), where F−1 :

F−1
t,B,ν(u) =

0, if u ≤ mortality_func(0, t, B, ν)

∞, if u ≥ K[t]

−
ln
(
(K[t]−A[t]

u−A[t])
(ν+0.25t)

−1
)

3t(B+5−t) + (−2+2.5a)t
(B+5−t) , otherwise.

K = {1 : 1.0, 2 : 0.9, 3 : 0.05, 4 : 0.02, 5 : 0.01}
A = {1 : 0.6, 2 : 0.1, 3 : 0.0, 4 : 0.0, 5 : 0.0}

,

mortality_func(x, t, B, ν) = A[t] +
K[t]−A[t]

(1 + (3t) · exp (−(B + 5− t)x+ 0.5t))
1

ν+0.25t

where B ∼ Unif(2.5, 3.5), ν ∼ Unif(1.5, 2.5), and the keys of K and A are the triage levels.
Triage count of each level can be simulated by firstly sampling from multi-nominal distribution with

40 Li et al.

probabilities from triage 1 to 5 as {0.1098, 0.2761, 0.4596, 0.1297, 0.0248}, and then counting the number
of each category.

The quantity we are estimating is the mortality. The PEMC predictor is a random forest. The
amount of training data is 105. During the pre-training stage, we collect the training data by the
sampling procedure in Table 10.

Variable Distribution
τ Unif{0, 50}
hosp2_doctor_shift_counts_1 Unif{1, 3}
hosp2_doctor_shift_counts_2 Unif{1, 3}
hosp2_doctor_shift_counts_3 Unif{2, 6}
hosp2_doctor_shift_counts_4 Unif{1, 4}
hosp2_doctor_shift_counts_5 Unif{2, 5}
hosp2_doctor_shift_counts_6 Unif{1, 3}
crisis Unif[1, 2]

Table 10. Training Data Sampling Distributions

During the evaluating stage, we fix ciris = 1.25, hosp2_doctor_shift_counts = [2, 2, 4, 2, 4, 1]
and a set of thresholds in {1, ..., 40}.

Threshold MSE ↓ MAE ↓
MC PEMC MC PEMC

0 10.974 4.142 2.765 1.587
4 10.749 3.899 2.751 1.500
8 10.882 4.080 2.786 1.554
12 10.243 3.609 2.638 1.466
16 9.777 3.326 2.555 1.422
20 9.535 3.266 2.497 1.416
24 9.291 3.181 2.456 1.394
28 9.236 3.192 2.445 1.403
32 9.212 3.145 2.434 1.392
36 9.175 3.120 2.427 1.382
40 9.174 3.122 2.428 1.376

Table 11. Error analysis for mortality estimation with varied thresholds.

Appendix D. Further Implementation Details of PEMC

We discuss several further implementation details that are important for successfully applying
PEMC in practice.

D.1. Parameter Space Θ. When determining the parameter space Θ, a key consideration is how
frequently the model will be updated. To ensure the performance of PEMC, it is desirable that
the training data encompass all practical scenarios the model is expected to encounter within the
designated update period. For example, if one is calibrating a Heston model (6) for certain SPY
ETF, on a given trading day, the calibration yields a specific set of parameters: (S0, ν0, r, η, δ, ρ, κ) =
(520, 20%, 4.5%, 0.04, 0.3,−0.7, 0.2) and the user of PEMC chooses to update the prediction model in
PEMC once a month, then, based on historical data and market conditions, financial practitioners

PREDICTION-ENHANCED MONTE CARLO 41

could make reasonable guesses or confidence intervals about the bounds within which these parameters
are likely to fluctuate over the coming month.

This process is conceptually similar to the selection of uncertainty sets in robust optimization [16]
or distributionally robust optimization [51], where the goal is to include realizations of parameters with
high likelihood. However, unlike robust optimization approaches, which often favor data-dependent
uncertainty sets, our focus here is also guided by the expertise of financial engineers. The training
parameter space is designed to reflect realistic and practical scenarios derived from domain knowledge,
rather than being strictly driven by statistical guarantees. In applications, we construct reasonable Θ
for practical models, such as forward curves in HJM modeling [61] or local stochastic volatility 2D
grids [57], among others.

D.2. Eliminating Data Storage Overheads. In typical ML workflows, training datasets—often
costly, scarce, and carefully curated—are stored and reused extensively. By contrast, within the PEMC
framework, the nature of data generation during the prediction model training in Algorithm 1, actually
does not require extensive data storage. This difference stems from two main considerations. First, the
volume of training data required to achieve a well-performing prediction model can be large. Storing
all of it would be both expensive and unnecessary. In PEMC, the training data can be produced
directly via MC simulation, ensuring an effectively unlimited supply. Second, this flexibility allows for
a more efficient workflow. Data can be generated “on the fly” and processed in streaming fashion. For
example, to train on a large number of Ntrain samples, one could iteratively produce small batches,
train the model on these batches, and discard them after training. In this manner, we have successfully
trained models in the applications using data on the order of 107˘108.

D.3. Evaluation Metrics. While training the NN estimator g using MSE loss is common, it is not
always clear how to interpret the resulting MSE score. Unlike some well-established benchmarks (e.g.,
classification accuracy), there is no canonical threshold or known “good” MSE value for a given problem.
This ambiguity makes it challenging to determine when the network is sufficiently trained. To address
this, we can exploit the fact that g is meant to represent the conditional expectation g = E[f | input].
If the network approximates this expectation well, then the sample average of g(X) should be close to
the sample average of f(Y) over a given dataset. One practical diagnostic is to compute the Mean
Absolute Relative Error (MARE) between these two averages. If E[g(X)] ≈ E[f(Y)], it provides a
tangible indication that g is capturing the underlying expectation. Our empirical experience suggests
this criterion is very effective in practice (a 5-1% MARE typically indicates exceptional PEMC),
complementing common techniques like early stopping in ML workflows. More importantly, as the we
have shown in the theory, if g closely approximates the conditional expectation, the variance reduction
in PEMC is guaranteed—even if marginally—relative to standard MC.

Appendix E. Additional Details on Hyper-Parameters for Variance Swaps

Tables 12 and 13 detail the hyper-parameter setups for the NNs presented in Section ??.

Table 12. Neural Network Architecture Parameters

CNN Branch Feed-forward Branch
kernel size: 3, stride: 1, padding: 1
max pooling (kernel: 2, stride: 2, padding: 0)

hidden dim: 512
output dim: 128

42 Li et al.

2D function branch parame-
ters

1D function branch parame-
ters

Vector feature branch
parameters

Kernel size: (1, 3)
Stride: (1, 3)
Padding: 0
AvgPool2d kernel size: (2, 2)
AvgPool2d stride: (2, 2)
AvgPool2d padding: 0

Kernel size: 10
Stride: 3
Padding: 0
AvgPool1d kernel size: 2
AvgPool1d stride: 2
AvgPool1d padding: 0

Hidden dim: 512
Output dim: 128

Feed-forward Synthesizer Parameters
Hidden dim: 128
Output dim: 1

Table 13. Hyper-parameter setup for the neural network

Appendix F. Review of HJM

The HJM model directly describes the evolution of the entire forward rate curve, offering greater
flexibility than traditional short-rate models. For illustration purposes, we focus on a one-factor
specification with exponential volatility structure [61], though the framework readily extends to
multi-factor cases.

Consider the problem of pricing a swaption. This is a contract granting its holder the right, but
not the obligation, to enter into an interest rate swap at a future date. In a standard interest rate
swap, one party agrees to pay a fixed rate while receiving a floating rate, and the other party does the
opposite. Consider a swap with np fixed payment periods, each of length ∆t′, starting at time t′0 and
ending at time t′np

= t′0 +
∑np

l=1 ∆t′. The value of this swap at time t′0 is:

Vt′0
= C

(
R

np∑
l=1

B(t′0, t
′
l)∆t′ +B(t′0, t

′
np
)− 1

)
,

where C is the notional amount (contract size), R is the fixed rate, and B(t′0, t
′
l) is the discount factor

from t′0 to t′l. A swaption provides the holder with the option to enter into this swap at t′0. The payoff
of the swaption is simply

max(0, Vt′0
),

and its expectation under the risk-neutral measure gives the price of swaptions. To specify the risk
neutral measure, one needs the forward rate process needed to price the bond. The time t price of a
zero-coupon bond B(t, T) maturing at time T is given by the negative exponential of the cumulative
forward rate f(t, u) as: B(t, T) = exp

(
−
∫ T

t
f(t, u) du

)
, or equivalently ∂ logB(t,T)

∂T = −f(t, T). The
HJM framework [61] models the dynamics of forward rate curve directly:

df(t, T) = µ(t, T) dt+ σ(t, T)⊤dW (t),

where µ(t, T) is the drift, σ(t, T) is the volatility function of the forward rate, and W (t) is a Brownian
motion. In contrast to short-rate models (e.g., [130] or [39]), which only model the dynamics of the
short-term interest rate, the HJM model directly models the dynamics of the entire term structure of
interest rates [66]. The HJM model is widely used in practice because of its flexibility in modeling
interest rate derivatives like swaptions and its ability to incorporate complex volatility structures
[29, 5]. However, the model’s generality also leads to the need for sophisticated numerical methods for
simulation [61]. A key property of the HJM model is the no-arbitrage condition [61], which specifies

PREDICTION-ENHANCED MONTE CARLO 43

the drift completely by the volatility:

µ(t, T) = σ(t, T)⊤
∫ T

t

σ(t, u) du. (25)

Thus, in the HJM framework, the model is fully specified by defining the initial forward rate curve
f(0, T) and the structure of the volatility σ(t, T). In our experiment we used a simple one factor HJM
for illustration.

	1. Introduction
	1.1. Our Contributions
	1.2. Literature Review

	2. The Prediction-Enhanced Monte Carlo Framework
	2.1. Existing Challenges of MC, ML, and CV
	2.2. Our Remedy and Requirements

	3. An Illustrative Case Study: Pricing Asian Options with PEMC
	3.1. Problem Setup
	3.2. Feature Engineering to Design X
	3.3. Building Prediction Model
	3.4. Evaluation
	3.5. Overall Methodology

	4. Analysis and Performance
	4.1. Bias Analysis
	4.2. Variance Analysis
	4.3. Variance Reduction
	4.4. Control Variate Coefficient

	5. Applications
	5.1. Variance Swaps in stochastic local vol models
	5.2. Swaptions in HJM Models
	5.3. Discussions, Extensions and More Examples

	6. Conclusion
	References
	Appendix A. Proofs
	A.1. Proof of Lemma 3
	A.2. Proof of Lemma 4
	A.3. Proof of Lemma 5
	A.4. Proof of Lemma 6

	Appendix B. Numerical Results on Asian Option Pricing
	B.1. Experimental Setup
	B.2. Evaluation
	B.3. Using PEMC as a ``Boost" to Known CV

	Appendix C. Additional Details on the Ambulance Diversion Example
	Appendix D. Further Implementation Details of PEMC
	D.1. Parameter Space
	D.2. Eliminating Data Storage Overheads
	D.3. Evaluation Metrics

	Appendix E. Additional Details on Hyper-Parameters for Variance Swaps
	Appendix F. Review of HJM

